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2.0 APPROACH

2.1 Selection of Appropriate Algorithms

Numerous classification algorithms were considered as candidate methods for extracting natural
and manmade features. These included the parametric supervised classifiers such as the Bayesian
discriminant and Mahalanobis distance classifiers; non-parametric supervised classifiers such as the

imple Buclidean minimum distance, and error correction techniques such as the Ho-Kashyap and
Wi -Hoff methods; as well as unsupervised clustering techniques such as K-Means and the
ISODATA methods. Because these methods are commonly documented, knowledge about them is
assumed, and details are only brought into the discussion as needed.> Mathematical descriptions
of the selected algorithms are given for reference and for the sake of being precise about what is
actually being tested.

Pu:bxeﬁence, along with some theoretical considerations, led investigators to exclude clustering
me the current effort. Such methods are perhaps best suited for sorting pixels in a non-
eneous training class into a small number of homogeneous ones, as discussed in Section

2.2.1. However, clustering on an image containing anything but the simplest of scenes should be
avoided. During an effort conducted during the Persian Gulf War that was directed at detecting oil
against a water background, the ISODATA/ISOCLASS method was found to give unstable
results.S In particular, two Landsat TM images containing almost identical scenes were clustered
using the same ISODATA process and running parameters. One of the resultant class map images
dispfayed very impressive results that were in fact judged better than the results produced from the
Ba discriminant and Euclidean minimum distance methods; however, the second image

results that were nonsense and totally useless for delineating oil. KMEANS is a simpler
algorithm which is an alternative; however, this clustering method requires a priori knowledge of
the number of clusters. Both methods are, of course, nonparametric.

From a mathematical viewpoint, the disadvantage in using ISODATA/ISOCLASS is that finding a

global solution cannot be guaranteed. This clustering technique may settle into a local
rather than global solution (the minimized value of its objective function is not a global minimum).
The local solution generally depends on the initial starting estimates for the seed clusters and
mcifying different seed points for the initial clusters can produce different classification outputs.

differences may or may not be significant, but nevertheless a unique solution can never be

teed. In the case of the Persian Gulf study, the results from the second image apparently
settled into such a local minimum, and this solution did not correspond to the reality of the ground
features within the scene.

The error-correction procedures (nonparametric) were not considered because of the desire to
ultimately use a rejection criterion for pixels that do not match a training class or that correspond to
a mixture of classes (the need for this rejection capability is discussed below). From a theoretical
viewpoint, the most appealing approach to invoking a rejection statistic is to work within the
framework of a parametric model. Although a parametric-based rejection statistic could be
computed separately, it seemed more appropriate to use a parametric model throughout this stage of

SCharles W. Therrien. Decision Estimation and Classification. New York, NY: John Wiley & Sons, 1989.

Sing-Tze Bow. Pattern Recognition - Applications to Large Data-Set Problems. New York, NY: Marcel Dekker, Inc., 1984.
6 Robert Rand, Donald Davis, M.B. Satterwhite and John Anderson. Methods of Monitoring the Persian Gulf Oil Spill
Using Digital and Hardcopy Multiband Data. Fort Belvoir, VA: U.S. Army Topographic Engineer Center, TEC-0014,
August 1992,
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APPROACH

d.1.2___Bayesign Classifier

The Bayesian classifier is a quadratic algorithm that generates hyperquadric decision surfaces (i.e.
hyperplanes, hyperspheres, hyperellipsoids, hyperparabloids). Accordingly, it is also more
ex and computationally slower. From a statistical point of view, the algorithm is attractive

because it weights the variables, and it accounts for correlation among them. Under the
assumption that class data belong to multivariate normal populations, the method is optimal in the
sense that it minimizes the probability of classification error. The multivariate normal (MVN)
assumption allows the distributional properties of each class to be completely specified by a mean
vector and covariance matrix. Unfortunately, violations of the MVN assumption (quite common in
;:?ﬁce) and difficulties in estimating the class covariance matrices can potentially lead to poor

ormance.

The conditional probability function for a multivariate normal random vector x ~ MVN(u, X)
belonging to class w; is

fxw(x| w;) = Sexp[ -3 * (x - WYE(x - i) ]

1
@upaE

where Z; is the covariance matrix for class w;, and n is the dimension of each pixel vector x and
each mean vector y;.

The Bayes classifier appeals to the well-known Bayes Theorem and then uses the logarithm of the
a posterior probability fwix(wdx) = fxjw(x] ;) * P(w;) as the definition of the Bayes discriminant
function:

gi(®)= -1 @-p)yEix-p) -3 log| %] + log P(w;) - 3 log 2

During this study, the a priori probabilities P(w;) are set equal and do not contribute to the
decision. Since the last term is a constant that also does not contribute to the decision, the Bayes
discriminant function used in this study is

g(X)= -3 ° (x- Wy ENx - ) -3 log | X

In obtaining good performance, the MVN assumption seems to be more critical for the quadratic
classifiers (such as Bayes) than it is for the linear ones.” One reason for this is that the
mathematical ies of the true decision regions are well behaved for MVN prototype (training)
distributions and can be defined by positive definite quadratic forms. For example, the regions are
defined by conic sections in the bivariate case (two multispectral bands). The classification region
for a particular class might be the interior of an ellipse or the region between two hyperbolas $ In
general, a quadratic function will define the regions; however, it is not necessarily a positive

7 Richerd A. Johason, Desa W. Wichern. Applied Makivariste Statistica 204 Baition. Englewood CNiffa, NJ. Prentice-
Hall, 1968, p 493 aad pS13.

8 T.W. Anderson.  An /atroduction 1 Mulivariate Sististical Anelysis. 2nd Editon, New Yort. NY. Joke Wikey & Sons.
1984, p23S.




APPROACH

definite quadratic form. In this case, the Bayes classifier as defined is no longer optimal since the
model is only an approximation.

Poor performance can result from difficulties in estimating class covariance matrices. Such
difficulties can result from either insufficient variation in a sample (attributable to lack of feature
variation and/or quantization effects) or % ropriately high variation (attributable 10 noa-
homogeneous samples and/or outliers). issue is discussed further in Section 2.2.2.

However, a major contributor to poor performance is mixed pixels comprised of more than anc
feature. If a mixture comprised mostly of a predominant matenial is used as a waining sample, the
MVN assumption is almost certainly violated. ’lbeoovmmmm(athepmdw
will also be too high and therefore may give the class distnbution 100 high a spread (xdcal trusng
classes should have low variance/covariance (o reduce the overiap between classes) Lf the wusrung
data are constrained to pure pixels, mixtures in the remaining image data can skow S
corresponding pixel vector intensities toward the wrong class, resultag 1a susclassifcations.
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APPROACH

2.2 Basic Issues

Mmmb@cmmmmbeaddmdmmwd\ni?mmexmmmm
manmade materials from broad-band imagery: theopﬁmalselecﬁonommsss, improving
the performance of conventional algorithms, and handling mixtures of i

42.1__Qptimal Selection of Training Classes

The three supervised methods require training data to define classes. It is quite
conceivable that the performance of these classifiers will vary significantly, depending on the skill
of an analyst to define appropriate prototype classes. Not only must such training classes be
spectrally separable from each other, they must be representative of the features in the rest of the
scene. There are the issues of whether to choose a large or small number of classes, to choose
tightly or loosely defined classes (in a spectral variance sense), as well as to include or exclude
mixtures of materials in samples. For examfglle, given that one of the class categories of interest is
grass, do we define a number of tightly defined grass prototype classes with a small variance (that
we will later on consolidate into a single grass category after the classifier is finished) or do we
combine all the grass samples into one grass prototype class that will exhibit a larger (pcrhas very
large) variance? As another example, given that the class of concern is swamp, do we define a
number of swamp prototype classes (representing various mixture ratios of water and vegetation)
or do we exclude this category and later on apply a mixed-pixel algorithm to the rejected pixels?

Optimal selection of class pro would seem critical to achieving optimal results from a
supervised classifier. Hov‘v’evm an operational point of view, a key concem is whether it is
possible for an analyst to identify the prototype classes needed in a timely manner, without too
much difficulty, and without requiring an unusual amount of skill. Therefore, it is important to
simulate varying degrees of operator skill and/or effort, investigating the consistency of
performance results.

In most situations, an analyst will likely find it difficult to define all at once a complete set of

pro classes that is truly representative of a scene. There are two primary reasons for this
difficulty. The first reason is that the analyst is unlikely (except in the case of very simple scenes)
to be aware of all the natural and manmade features that exist within the scene, and even if the
analyst was aware, a complete set of good samples are often difficult to find. The second reason is
that a scene will seldom be a clean display of perfectly homogeneous and spectrally well-separated
materials. Certain natural and manmade features are mixtures of materials.

This predicament strongly suggests the need for an iterative methodology. As the classifier

data within a scene and encounters pixels that do not correspond to one of the prototype
classes, it should have the ability to reject them. Rejected pixels could be subsequently processed
in a number of alternative ways. In a most simple manner, the rejected pixels could be processed
in another pass; whereby, new classes are added to the prior set of prototypes classes and such a
new set of class prototypes used as the training model. Alternatively, the rejected pixels (now
representing a relatively small portion of the original scene) could be clustered. More sophisticated
processing could consider the rejected pixels as candidates for mixtures of the class prototypes.

As part of the optimal selection process, outlier pixels should be removed from training samples (if
they are present) before the covariance matrices are computed and input to the training model.
Outliers can occur, for example, when an operator mistakenly crops the boundary of a training area
to include part of another feature, or perhaps a few scattered single pixels are located within an
otherwise homogeneous area. The presence of only one to three outliers can seriously degrade the

12




APPROACH

estimate of the covariance parameters of the model. This issue is discussed further in the next
section.

Another issue similar to outliers is the situation where a training set actually consists of two or
three spectrally well-defined materials. Perhaps it is impossible for an analyst to pbysically draw 2
between such materials of interest because the pixels are intermixed. If the analyst
howsmemawmiswofammin(snaﬂ)nmberofmdak,aﬁmplcdw
(suchasKMEANS)shouldbeablemsortthepixelsandformmemine of

homogeneous training areas.

2.2.2 Improving Performance of Conventional Algorithms

On a number of occasions prior to and during this effort, the investigators have expericaced
garformancepmblemswiththeBayesian Mahalanobis classifiers with regard 10 certain

tures. For example, these classifiers almost always have a higher error rate for water thas does
the far less sophisticated Euclidean minimum distance classifier. Also, at times the LAS softwarc
used at TEC generates non-fatal (but alarming ) error messages regarding the possible singulanty
of some class covariance matrices.

The problem is addressed by attributing this difficulty to degenerate covasiance matricos, resulong
from insufficient variation in a sample (attributable 10 lack of feature variation and/or quastizatae
effects), and proposing that all class covariance matrices be forced 10 have 3 cortain minisum
variance. In particular, it can be observed that water classes oficn have variances loss than one.
With such a small variance, the covariance factor in the classifier’s discrisninant function Cawess
the algorithm to form a sort of impenetrable barrier that causes many legitimate water sanples Gt
are only a distance of 2-3 gray shade values from the compooents of the waler class meas Ve o
be assigned to some other class that may actually be a distance of 20-40 grey shade valess per
component.

Improvements to the performance of the quadratic classifiers can also be made by removing outher
ixels from training samples (if they are present) before the covariance matricss are computed and
input to the training model. Although the estimates of mean vectors are aot sigaificently afiscend
by a few outliers, the presence of outliers in a training sampie can seriously corrupt She covessance
estimates. Samples with only a very few outliers, say 2 10 3 percent, will gromiy overestimate Ow
underlyingpare:gopulaﬁons;pamad' arly, if the outlier samples are from o material with » spectre!
signature quite different from the ial of interest. For wsing Landset Themaenx
Mapper data, 3 pixels of vegetation embedded in a sample of 100 waler would

increase the estimates of the population covariance matrix elements bands B4 and B3
(044, Oss, Oss, etc.). This outlier effect is casy 10 show, for exampie, by using & SRR
spreadsheet program and ing the variances for s sampie of sbout 100 pinels, with and
without a couple of outliers. removal of obvious outliers, if they comprise « wmall poroemiags
of the training data, should be simple to automate. '

'Ihemostdmllenginfproblemiswﬁndlmecbni:mh Ge cxisteace of mishee,
and identifying the elements and proportions mistwes . Gives thee ¢
scene consists of pure pixels of ials and the caveats mentionsd sbove ia Sections 2.2 | end
2.2.2, most conventional algorithms, including the simplest, will rulber vell Howwwes
mn;ifgmofmawﬁﬂs(sngnmpixek)mwm - of Ge proddem imorvees
many fold.
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DESCRIPTION OF EXPERIMENT

During the course of this effort, all five dates of Landsat TM imagery were used. Initial trials
focused on the May 1987 image. Once the behavior of the algorithms for this single date was
established, the investigation proceeded to the remaining four dates.

Trials were conducted using a combination of training, test, and ground truth data extracted from
the montage image set. During some trials, the actual montage image was classified and numerical
accuracy assessed by comparing to a ground truth mask using the LAS system. During other
trials, numerical accuracy was accessed by classifying the training data (autoclassification), test
data, and ground truth data, which were extracted from the montage images using TEC-developed
soﬁwar:h on a microcomputer. Any data labeled as ground truth was verified by a personal site
visit to the area.

Perhaps the easiest way to understand how this combination of data was used is to consider that all
these data (training, test, and ground truth) were derived from a single large pool of data, into
which the investigators placed their specific datasets. At various times during the effort,

investi extracted samples from the montage images with some knowledge of each site known
thmugg‘p‘g:onal experience, analysis of the high resolution aerial photographs, map information,
or personal site visit. Rather than give a historical chronicle of the training, test, and ground truth
site extractions and of how the experiments were performed, we organized the description and
results of the experiment by theme.

Some of the samples represent sites extracted with a high degree of skill or knowledge (sometimes
with collateral high resolution photography), whereas others represent sites extracted with less skill
or knowledge. Any of these sites would be valid candidates for training data and allow the testing
of algorithms on highly skilled versus less-skilled site selection. The sites collected with a high
degree of knowledge/skill would be valid for training or test data, whereas ground truth data
(although sometime located by aerial photographs) were verified by site visit.

3.2 Training, Test, and Ground Truth Selection

As just discussed, the training and test data were extracted from a large pool of data that can be
grouped into numerous candidate classes/sites. Each site (over 300 available in this pool)
corresponds to a geographic site. The largest number of sites are defined by a LAS statistics file
called MOSAIC.STATS that contains a collection of 296 sites. The sites were extracted, later
examined by graphical and statistical analysis, and categorized into a smaller number of classes.
Various descendents of the MOSAIC.STATS file were generated, tesultm% in statistics files with
as many as 99 classes and as few as 10 classes. These files, along with a few other class/sites
defined by another investigator in another file, comprise the pool of source data from which
training and test sites are extracted and defined.

No sane person would attempt to use this particular method of site selection in a production
environment. However, for the purpose of this study where we attempt a general characterization
of the algorithms and test for robustness, this approach is really essential. Some scatter diagrams
and graphs of spectral signatures are shown in Section 4.1 (Figures 3 to 11). In addition to
portraying the layout of certain prototype classes in spectral space and indicating their separability,
these figures also raise the concern of whether to include a small or large number of training sites
and would seem to suggest that a rigorous analysis of a large set of prototypes is warranted.
However, keep in mind that the ultimate intention is to define the simplest method for extracting
training sites without compronusing the classifier's accuracy.
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As mentioned before, an attempt is made at distinguishing performance semuiin wall. Suksiy <sast-

defined by varying degrees of rigor. A numerical scheme is used 10 trace @ aBgle & B <ants

Clasws1t013weteselectedqmckly,basedsim%¥eonknowbdpd&m¢-ﬁu g 2
ne

appearance of the site in the multispectral sce! y are not part of the MOSAR 31 4%% Bt &
was rigorously analyzed. Of these, classes 1 to 8 are spectrally s el wR Sl
classes that represent materials as opposed tocaﬂo%k features. (0K 6 N e dee
that reside in the large class statistics file MOSAI ATS. Classes grouss Bms IR as
ground truth sites verified by high-resolution photography and site vesat

The pool of data was used to construct four data sets called Dataset A, Dutos &, 1amians. . aes
Dataset GT. During the course of the experiments, Dataset A was uind a0 & Suinivg Snwnns-
Dataset B and Dataset C were used either as training data or iest dats dopmlsng @ #s sias. as
Dataset GT was defined as ground truth and used exclusively as tost data  Eaays Yoo Be s
discussion below, the use of various combinations of these datasets will dw Snuwmu' »
Section 3.4.

Dataset A consists of nine classes that were given three different pormeatcun Suitng ¥6 cvened. -
the experiments. These permutations are given the names Datasel Al, Dunaws A, ani' Zoneons
and are listed in Table 3-1. As mentioned, these datasets were usnd eachwmirvetis @ Srnining @
The purpose of this dataset is to test the performance of the classifier whms i suntios «+ <sasne .
kept to a minimum, and the selection is made to represent spectrally buosmgmescn Janss: S
represent materials (rather than cartographic features such as roads, whws, S, A=t
fields, etc). The working hypothesis is that the objects within 3 smae (¢ § gt Sosvrss:
are actually composed of a small variety of spectrall mm-’nb g e -
spectral variation is due to mixtures of materials. A{thmghu finer spexienl weiiitn Bese +
perhaps a large variation of fine spectral detail within the various masimrusle. & & Soqeal Sat S
level of classification needed, these variations can be ignored.

Dataset B consists of 26 classes that were given two permutations darwng @ < o N
experiments. These permutations are given the names Dataset Bl amd Donaor 5., ané oo fvmer
Tables 3-2 and 3-3. Dataset B1 contains 20 classes and was used & » Smining ot S 3
contains these same 20 classes (Classes 100-194) plus an sdditional wis hummse (imasw ¢ Y,
however, note the data from these classes were sampled 50 that 80 cAams AWRBNIE wese Base T8N
samples. A somewhat different working hypothesis (from that & Detsss A wee waei « S e
classes correspond to cartographic features that may or may oot be pusy smawstics < Jenpe Souse
this dataset were sometimes used for training and sometimes used aa ¢ 9 Smonr  Sne -+ e
classes were also used to study the statistical properties of some of G chawe AussPriiomm.

Dataset C contains 25 classes and was used as a source for some of G gragssi Saw s oo
mixture analysis. The original intention was to use these classes & amBuy wweee + snpiengy oo
test data for further classification runs; however, the study was bexxsing exssamion onf ¢ o
decided to halt the classification trials in favor of performing e mistwre anbran 5 Gopeeppses
of these classes is listed in Table 3-4. For the most part, these clammen s adisttunt (+ > wwsstis
number of) geographic sites extracted from within the brosder classen s Dimems

Dataset GT contains eight classes and was used as test data for some of G0 wails 5 Gupespsion o
given in Table 3-5.

Appendix A provides supporting statistical data for the trials. In Gus spgemlin. Tlne 5. « w
list the mean vectors for the classes in Datasets A and B; Table A7 toas Sw R ;,:‘:;_
the classes in Dataset A; and Table A8 lists the correlation matrices fow B aaws ¥ T ieese ¥
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DESCRIPTION OF EXPERIMENT

AS Limesr Mixing Triaks

The linser mixawee analysis was directed at swampe, which can presumably be modeled as
miuens of vegstation and water. The trials address two questions: d

(1) b & pasnible thes cndmombers other thas water and vegetation can be used to
sdeqputely model svamg?

@) b » pessible 0 distinguish the type of vegetatioa (¢.g. grass, deciduous trees,
eonifepsus Wees) thet is prescnt in the mixture?

Clossly miated 0 these questions is the issue of noaunique solutions, which is explored in detail.

Ten sampies were sclectied 10 test the linear mixing model. These were extracted from Dataset B2,
and Detaset C, and are identified as follows:

Lahksi
C174

C178
C17%
13
C128
C133
B140
B160
B2
B190

AT

The swamps, C174, C175, C176, are the materials assumed to be mixtures of water and some
type of vegetation. The remaining materials are tested as possible endmembers.

e focused on an approach that begins with pairwise combinations of candidate
-az:. and expands the model to include additional endmembers only if the best pairwi
mode] is inadequate. Prior to this, trials that considered full regression model combinations of
three 10 four endmembers were tested, and a standard method of model reduction was attempted.
This nhmmned to offer no advantage over the that begins with pairwise
endmember and had a number of disadvantages, including too few degrees of
fresdom for the residual sum of the possibility of negative coefficients (implying a
aegative amount of the ing material), and problems of imposing the physical constraints
mentioned in Section 2.1.5.

The trials began with determining the domain limits defined by each of the pairs of endmembers.
These limits must necessarily be considered approximate because sample mean vectors for each of
the endmembers were used in the definition, and since each sample is a cloud of data, there are
W endmembers in each sample that would increase the width of the

. A better method of defining the interval would perhaps be to choose the
extremums of the data cloud, so long as these extremums were not outliers. However, this would
bave increased the complexity of implementing the trials beyond what could be allocated to the
current effort. Such a method should be tested in the future.




DESCRIPTION OF EXPERIMENT

Thedcmndmmdhmuweuusedbmgnadegmeofcomplm(DOC)mﬂnheﬁm
physical constraint to restrict the allowable endmember combinations. Regression models are then
with diagnostic statistics for each of the pairwise endmember combinations. An F-ratio
is used o assess the statistical significance of a model. If none of the candidate endmember pairs
had produced a statistically significant model, then the model would have been expanded to include
addmomlendmembus(uptoa-t-componentmodel).

gooaas employed four criteria: (1) suitable endmember combinations need to have a
ﬁtstconstmnt; (2) large F-ratio models were considered ortosmaller

onesmasuusnalse s (3 dwmodelneededtobephysmllynlevmtby the second

constraint that all model ¢ positive and sum to approximately the value of one, as
mentioned in Section 2.1.5; (4)eachandevery:esndualmustbemll

Results are discussed in Section 4.7.




4.0 DISCUSSION OF RESULTYS

4.1 Graphical Analysis of Real-World Spectral Signatures

Before delving into the computational analysis that was Iots ammmpt ©© geis g W
the spectral nature of the features being studied i cxamining soms graphical presastahans
ofﬁed,&:uapi@nmbowthawb’ woeds, 50 can 8 be worth just shows G
many n

The data are preseated in two ways. Figures 3 and 4 are projections of theee-damenmonsl

wamumm&dmmuum“-uum
performance. Figures S t0 12 are graphs of signatures desived from & fow spssantuve SNantng
and ground truth sites.

Observing the projections in Figures 3 and 4, oas propasty it becomes nmmiunet)
obvious is how from concrete, asphalt, water, deciduous Uues and contiaves Sss aw
easily separable in spectral space. The sampies from each of thess classes fomn ull Sefinnd
clusters that do not overiap.

e o Do ciatees s pras, ey ccoupy » il partcn of @ qpacd . 8
even are s

te o L]
mﬂmmmm&ymuuw

The second thing to0 notice about classes Grass-A snd Gease-8 1 s ¥ & Bas & Gevws Swtvmss 8w
Concrete and D. Veg centroids, the two grass classes lis on this Ras. This & Swe So withn Figun
3 or Figure 4, each represeating different projections i specesl qpaen. s aie & G
observation that Grass-A appears 10 be located midwey on e line cossaating Clenows end [
Veg. Since concrete spectra ofien resembies s0dl specwra, Gis g puaihgity b ¢
i soil compooent; ie., it is a mixture of vegetation sad sadl. Pam, e
interpretations can be given 10 Grass-A. The fiest s Gt this chuss sy S aenng
(pa)‘dmiumﬁmmhw” whemes, G sounnd » thet G daw » ¢+
mixture of two endmember Mw“w The sxound astute aus aaully Seus
for unhealthy or dying grass with a relatively low Pﬂ-‘-‘;ﬂm
) where a good amount of soil reflectance s present. & b sund anulaning @ S Sow S
use of Grass-A as a class in Trial 2 resnlind i poot porionmene. o
numerous test samples withia the TEC, High School, and Mall stam (e sl onne Wiientnr
coacrete) were misciassified as Grass-A.

Notice that if a line is drawn between the ceatroids of D Veg anl Weaam | i» sllr Niguw ? »
Figure 4, the samples of C. Veg lie very closs 1 his line and s ov @ dend mibees
between D. Veg and Water 1. Ia this case, it can be assnmeed et C. unraypenh & ¢
particular form of vegetatioa (coniferous) ans! Gut it s st o anis of e = o
wates. However, suppose we introduce & e Gt s indend o mithun of 3 Vg ant
Water 1. It is very conceivable thst this class will ccowpy G ssmme pation of s The
overlap will also be later confirmed when Figwes 3 & § o = Sl S
P oaiferous trees n the hw':a.‘lh. - ' 'w“
trees ificati ¥ graphical mtwe of Gn dab & Gyl tivg »
possible degeneracy in the spectral space defiard by Gns wanll sumbus of handh '
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MGCLESION OF GRAPHICAL RESULTS
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DISCUSSION OF GRAPHICAL RESULTS

25000 Jrc-cccmeeeeoesseseesieicicicoi ittt ie e
GT46 Ground truth - Swamp coasisting of water, grass, .attails off the Potomac River.

C174 Dataset C - Swamp_2A located near Aberdeen Proving Ground.
C175 Dataset C - Swamp_2B located in DelMarVa Peninsula.

C176 Dataset C - Swamp_4 located in DelMarVa Peninsula.

C178 Dataset C - Swamp_8 located near Patuxent.

P10 X1 1 S Sty dplon-JSngepiPhapiiutepeupuieipie s

B1 B2 B3 B4 BS B7
Figure 7. Spectral Signatures of Swamp Sites MY85

Figure 7 shows the mean spectral curves for six MY85 swamp sites. Unlike the previous graphs
for deciduous and pine sites, the curves of these sites do not follow the same trend. This is
particularly true for the spectral region represented by bands B3 to BS. Not only is there a large
variation in the intensity variations of bands B4 and BS, but there are significant variations in the
slopes of the curves between B3 to BS.

These variations are indicative of different mixing proportions in water and vegetation (along with
perhaps different species of vegetation) that compose the swamp sites. Although Swamps C174,
C175 and C176 occupy a separate region of spectral space from the other classes considered,
others do not. Note the overlap between the GT46 swamp and deciduous trees (Figure 5), the
C178 swamp and deciduous trees (Figure 5), and the overlap between the C179 swamp and
coniferous trees (Figure 6).
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IC174 Dataset C - Swamp_2A located near Aberdeen Proviag Geowad
C175 Dataset C - Swamp_2B located in DelMarVa Pesiasula.

C176 Dataset C - Swamp_4 located in DelMarVa Peainsula.

IC178 Dataset C - Swamp_8 located near Patuxent.

C179 Dataset C - Swamp_9 located off Choptank River.
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Figure 8. Spectral Signatures of Swamp Shse O W

gure 8 shows the mean spectral curves in October 1985 for five of fiw amrre owwny 4t (1 ° W

not available) displayed in Figure 7. In addition to showing tse teluwrsicr of fuwp et @0 womitine
season, the responses in October (particularly in B4) can be used 1 denvmanrwe ftm < » o .
different ground feature from coniferous trees, and C178 is a differwss grouns lositun rom
deciduous trees. For example, observe the following differences.

MY8S ;3 | B2 | B | 1] [ }) |

Swamp-C179 92.88 35.81 NN g6 e 32 vow

PINE 93.92 35.14 31 6% L7 € .

0C85 Bl B2 | B ¥ [ & L X

Swamp-C179 66.46 24.13 bo B AN ¥ 3K T 1 e

PINE 61.46 22.06 205 9 "3 26 & it g
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DISCUSSION OF CLASSIFICATION RESULTS

4.2 Methods to Assess Classification Accuracy

The results of the classification runs were initially assembled into contingency tables that show the
results in detail (see Appendix B). Each row of the table corresponds to a test class, and the
columns list the number of samples placed into each of the prototype classes.

The contingency table results are summarized by tables in this section, which list omission and
commission errors. Each type of error takes a different view of the results. Omission error is
from the viewpoint of the test (ground truth) data. Given a group of test (ground truth) data, how
many samples did the classifier mislabel as something else? For example, if there are 100 water
samples in the test data and 5 of the samples were misclassified, the omission error would be 5
percent. Commission error is from the viewpoint of the resulting class map. Given that the
classifier labeled a certain number of samples as a particular category, how many of these samples
correspond to something else? This error gives the false alarm rate. For example, if the classifier
labeled 100 samples as water and 2 of the samples were actually something else (according to the
tzwt data or ground truth), the commission error and the false alarm rate for this category would be
percent.

Although the gou ings of test data remain a constant for all the various classification trials, the
groupings of the class map data are not constant. Therefore, comparing omission error results as
percentages is a reasonable thing to do; however, comparing commission error results as
percentages can be misleading. In comparing two trials, the percentage of commission errors
could conceivably increase, even though the absolute number of commission errors decreases
dramatically. This is discussed further in Section 4.3, where this situation occurs during Trial 3.

In comparing the class names for training sites with those of the test site, one quickly notices that
there is not always a one-to-one correspondence. For example, the test class Mall does not
correspond to any of the training classes in Datasets A1-A3. However, for our purpose, we could
consider the classifier to be correct if it labeled such pixels as either asphalt or concrete since it is
quite conceivable that a shopping mall would be an aggregate of asphalt and concrete materials.

In order to conduct a quantitative analysis, some kind of equivalence musted be established
between the classes in the training sets and those in the test sets. Of course, in the case of auto-
classification, such a correspondence is automatic, and in some test classes the correspondence is
immediately obvious.

Tables 4-1 and 4-2 define the equivalence between training and test classes that are used to
summarize the omission and commission results as presented in the following section. The
omission and commission results are computed from the contingency tables listed in Appendix B
(Refer to this appendix for a detailed look at the classification results).
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Table 4-1

Couastruction =
TEC Site =
Parkiand 1 =
High School =
Mall =
Parkland 2 =
Baresoil =
Fields-A =
Fields-C =
Fields-D =
Grass-A
Grass-B=
Grass-C=
Leaf =

Pine =
Road-A =
Runway-C =
Runway-F =
Swamp-A =
Swamp-B =
Urban-D =
Urban-F =
Urban-I =
Water-Al =
Water-A2 =
Water-C =

DISCUSSION OF CLASSIFICATION RESULTS

Class Equivalence Sets for Omission Errors for Trials 1-4

{Water 1, D. Veg, C. Veg, Water 2, Grass-A, Grass-B}
{Water 1, D. Veg, C. Veg, Water 2, Grass-A, Grass-B}
{B. Roof, Asphalt, Concrete}

{B. Roof, Asphalt, Concrete}

{B. Roof, Asphalt, Concrete}

{Water 1, Water 2}

{Water 1, Water 2}

{Water 1, Water 2}

Table 4-2 Class Equivalence Sets for Commission Errors for Trials 1-4

Water1 =
B. Roof =
D.Veg=
C. Veg =
Asphalt =
Concrete =
Water2 =
Grass-A =
Grass-B

{Water A1, Water A2, Water C, Swamp-A, Swamp-B}

{—}

{Parkland 1, Leaf}

{Pinc}

{Construction, TEC Site, High School, Mall, Road-A, Runway C, Urban-D, Urban F, Urban I}
{TEC Site, High School, Mall, BareSoil, Runway F, Urban-D, Urban F, Urban I}

{Water A1, Water A2, Water C, Swamp-A, Swamp-B}

{Parkland 2, Field-A, Fields-C, Fields-D, Grass-B, Grass-C}

{Parkland 2, Field-A, Fields-C, Fields-D, Grass-A, Grass-C}
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DISCUSSION OF CLASSIFICATION RESULTS

VIR wine cacopiions, Bis modified Bayes method improved the results of the standard Bayes
deasifiss. The puibiem n omission enors for the waier classes disappeared and the errors for the
Nalsssalingl Jusnen voi sty mduced:

Waer- Al snguuend fmm 16.90% ersor 0 0.00% ervor.
Waes< mgnasd Bom 15.30% crsor 10 Q.00% ervor.
Swamg- A angrread Sim 66.47% ersx 0 13.20% ervor.

(38 sousns, B Swamp- A classes wer 8ot achually classified as swamp because there were no
swasng puncryps clusnss. They wese classified as some of water or vegetation (see the
“wntingsncy wbles s Agpendia B aad Tables 4-1 10 4-2 listing class equivalence sets).

e imgravament cirsevted s major Baw of the standard Bayes algorithm. Reference the
ontingsney emuits insd i Tabie B4 (» andv) of Appendix B and notice that a large number
of e winsinssified weler sad swemp sampies were labeled as asphalt. By invoking
e minawum variocs crienen ol of e waler samples were labeled correctly, and the number of
svinng wampion sisiubuisd s wphalt was reduced from 446 10 102

fhe mulifisd Buysn method alue improved the commission results, or false alarms, corresponding
% e gl sl

Apphuit Rinw susmn weve seiecad bom 681 semples 10 139 samples.

e tine durms for coniferous vegetation incressed from 134 samples to 203 samples; however,
1in grobiem i sut ae busd o & appeans.  Referencing the contingency results in ndix B, Table
B4 (v e v} sctics et 150 out of these 200 samples belong to the test dataset's swamp class.
MmomymewnMGuwnhhz'du. Given that swamp can be defined as a
ninure of o wolwr and Bt B mhlvenolinvo::dnej:gdoncriterionbfthis
anignment of Ywenp s 1o cosiferous vegetation can easily be considered correct.
-M;&»mmmwm“md.wesbouldexpeamseesuchfalse
sliwmn Hnuppoue (thin, i fact, does ocour).

Numerous minimwn veriance Breshold values were lested that ranged from 1.0 up to 25.0 (only a
value of MinV w16 for water and MiaVars) on other classes is shown). The best results were
whisved R e values shown. A larger value for water increased the errors for other classes,
wherean ¢ wnaller velue incrensed e errors for the swamp class.

e lnwhk of ewamp Faining clusses was actually intentional for this trial. Other trials include this

slumn. Consevuently, e esue of whether 10 identify swamps using numerous training classes or

uning ¢ minture spprowch cna b explored. Using the training class approach, many training

Mbtwmmhhh 10 be needed for » scene because of the large variations of possible
'y

minturen { ¢. water and 20% ; SO% water and 50% vegetation; 20% water and
W vogetution: o) avt to Menticn the various possible species of vegetation.
IT & minture :H ia stetnpied, one strategy would be to classify swamps as either water or

., with the intention (© reject dy the chi-squared threshold. In rejecting the classification,
ut then remembaring that the saraples were rejected as a water or a vegetation classes, they could
be s such for mived-gixel analysis. Subsequent analysis would then recognize the

ition et swamp is o mixture of water and vegetation. However, if the samples were rejected,

Swé romembered s ssphalt, this strategy would fail.
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DISCUSSION OF CLASSIFICATION RESULTS

Table 4-5 Auto-Classification Errors for Trial 3

This table lists the percentage of ervor in classifying the prototypes within each of the classes in the training set
A3, using the Modified and Standard Bayes discriminant; the Mahalanobis distance; and the Euclidean distance
methods.

PROTOTYPE Modified  Standard  Mahalanobis Euclidean

Bayes Bayes
Water 1 0.00% 0.00% 0.00% 0.00%
B. Roof 0.00% 0.00% 0.00% 0.00%
D. Veg 0.00% 0.00% 0.00% 0.00%
C. Veg 0.00% 0.00% 0.00% 0.00%
Asphalt 0.00% 0.00% 0.00% 0.00%
Concrete 0.00% 0.00% 0.00% 0.00%
Water 2 0.00% 0.00% 0.00% 0.00%
Grass-B 0.00% 0.00% 0.00% 4.17%

Table 4-6 Commission Errors for Trial 3

This table lists the commission errors in classifying the test dats test Set B2, using the Modified and Standard
Bayes discriminant; the Mahalanobis distance; and the Euclidean distance methods. Training Set A3 was used to
train the classifier. The modified Bayes was run using minVar =16 for the water classes and minVar =3 for all other
classes. The commission errors were computed using the “class equivalence set for commission errors” listed in
Table 4-2 and the contingency results listed in Table B4 of Appendix B. Both percentages and actual numbers of
efrors are given.

PROTOTYPE Modified Stadard Mahalanobis Euclidean
Bayes Bayes
Water 1 0.00% 0. 0.00% 0.00%

B. Roof = ..... — — —
D. Veg 22.74% 21.98% 21.33% 24.78%
C. Veg 34.64% 26.17% 23.73% 52.82%
Asphalt 19.83% 54.74% 55.67% 48.50%
Concrete 66.71% 67.00% 67.09% 45.43%
Water 2 0.00% 0.00% 0.00% 0.00%
Grass-B 29.48% 31.67% 34.10% 20.29%

PROTOTYPE Modified Standard Mahalanobis Euclidean

Bayes Bayes

Water 1 0 0 0 0
B. Roof = ..... —— —_— —_—

D, Veg 266 244 224 311
C. Veg 203 134 117 440
Asphalt 139 681 707 599
Concrete 523 530 532 159
Water 2 0 0 0 0
Grass-B 263 298 343 97




Table 4-7 Omission Errors for Trial 3

This table lists the omission errors in classifying the test dets et Sei B2, qumuwym
discriminant; the Mahalanobis distance; and the Euclidean distancs sncatunts. Touming s &5 e atin + wm &
clusiﬁet.ThemodiﬁedBayeswumnuin;minVu-l&bhmm-bu-lwl‘fuo:ugu-s stonme-
The omission errors were computed using the “class equivalencs a5t iy amuming aman’ s » Yakk v o

the contingency results listed in Table B4 of Appeadix B.

TEST SITE Modified Standard Mahalaae  Busdtiieas
Ba

Construction 2{:4 % &y;ug 2w £ et
TEC Site 3.85% 3a5% b ¥ o 1% 0tk
Parkland 1 0.00% 0.00% 0o L,
High School 0.00% 0.00% oo L.
Mall 1.61% 161% 189 t N
Parkiand 2 0.00% 0.00% o (]
BareSoil 0.00% 0.00% 0.0 § shg
Flelds-A 69.30% 68.10% G X% %, 2%
Fields-C 68.32% 68.32% $Y.3%% i Wi
Fields-D 1.89% 0.94% Qe n g
Grass-A 0.00% 0.00% a9 110
Grass-C 3.23% 0.00% a0 » R
Leaf 15.60% 19.40% I N s N
Pine 2.54% Ine 4396 0
Road-A 18.76 % 18.56% 18 % € A
Runway-C 0.00% 0.00% 0 S0 -
Ruaway-F 0.00% 0.00% 428 L0
Swamp-A 15.20% "V 1, 3 R ¥ . .y
Swamp-B 0.00% 0.00% [y 108
Urbas-D 0.00% 0.00% Y ) (N
Urban-F 0.00% 0.00% & 2 L
Urban-I 02.00% 0.00% A %
Water-Al .00% 169500 16 208 1.
Water-A2 0.00% 1460% i e 1
Water-C 0.00% 15590 1% 900 i

The Fields-A and Fields-C sites generated the highest omismion ermm. Thvew sioe wos sammanes
to be agricultural fields. Their spectral behavior sad e resalting peos Wstamwen-s -+ Bon <
beunderstoodbyreferringtoggpeodh&wwlmu ean ey T i Towe Sty Sy -
May 85, August 85, October 85, and March 8S.

Consider the mean spectra for Fields-A. Notice that for de Moy 7° 40w v i+ e fab (s oot
as May 85, October 85, and March 85), the mesn spectral sgrutuse of fivi aie Gt wr sonceni.
the signature of vegetation, but rather it is closer ® twt of soll  Fior Bie Mg € doe &
signature changes quite dramatically to one that is indicative of eemeneds vgrerring - .

This is, of course, quite typical behavior for crops. 1t slso exphame e m ot
where the majority of the Ficlds-A samples were labeled Comcreme » (Bapoibrg = W
classifier used). In addition, ximately 20 10 26 percent of e 0 grywen ¢ B gty
deciduous trees (For further reference, see Table B4 in Appemdis Wy

47




Tables 4-8 10 4-12 summarize e sesuim of wing Bs madEnl Bepces SPISIRG: sl Nalang s
different rejection theesholds. The Bghias! irjccTum DMMIIE Saial v )° 5 + o8 Salgen
having a squazed Mahalanobis distance (0 Bs G imiad ty O Muitind oo agomns;
prester than this value ase sepecied. OF the Gure o, Win st dhuid Fomall B Ss ek
sumber of classification ersom, but Be most Sumbus of wpcanl e samen.  Adoatig
10 this value where x2  (6) CONESPORIS & & Thi-eiguaitd SRS Sasiiieg § Bogmam o Srani.
ndosnmﬁcamvduelcsm Gt 6 Boantul) ¢ LS ponnn Jaies e BE salge .
Question belonged 10 the Class Bl was winkied, but wew Ryl The Jiageild & Wi &
cnmonlyalbda‘l‘yplm

Decreasing this o mumber will seanll i & miing Tyge | s Mowonsi 3 il a0l & ¢ Righs
lerror. A Type U1 ervn cormnponds & B atugis @ N6 Jimd W wes NBE
umﬂymwmmm e ge B awa wil, of e

increase the classification ervor, Bowevey, & snulins suntus « samgios wil s wynasl

Some conventional softwase ySEme (8B @ LAS) Seus B apatiliin & Ivls ¢ I ugunmal
threshold, but have 3 limit wheby Be < *AUUE Mtes S Juasnsd & s s Snne o + K1
Al first consideration, & would eus 6 SINNSN 3 Senl FENE S Reomicalls o B
Vdutol s MMMMHWRSW‘!G‘MW Do
g mwmummmmmsuum Pomi. wall
& Doanlieil gy © e sguans e » B
m”:mdumum

The probiem of rpmcting 0 SNy WUDPIsn Wity Wkl ¢ low HEUBLIUE VILE . W0 RSN
if one recalls that 1CEnen Rove o kogs WBANE of Sumunt Bnamitsy Ve PratgEe W T Feg
and the sarapies Bat seed 1 bo clunaified My comanpmd Jpaeaids & Jitage Wr¥? paraw o
the same malerial, Dt Gnall puetions of MNETtid @ dbuEing e PIIN iR

For this reason, wo other Geondihl valion fhit davanginl ¢ S Oowe B §° 0 Bucais anf
1even times e x° . (0) Senes we s WAl B deadil Tu oagEein? T B Sumdiune
correaponding 10 swven mes Ne Aslincs woukid it e Bl Dttt aver (e e
loast cumber uniabeied pisein}

Table 4-8 shows e Bayen st <lunnificision muitn Le Be Gos thewliek? disasnan  aun
Bas already besn entablinhed Dt Do ualifiod By il peslmd we awon Tir 86 Seiuing

sampies, the results are umply green w Do prsutne of unianiied ot Neses S g 0
16.81 tejaciod 3 modurte sumber of wnplon i S8 6 of Wawr - (S8 0 Vg S8 o
Concrete;, 0.0% of othere) NMWmemmﬂmm~

(e 18 x A M3} BB re

This average rejection of | 7 purcont w vory omy v Bn Boosarunl vuiw of & gt Gy
a = 0.0t




fams &9 Sayes suters ioneilisasion Scols ising .- Nessenets Lo ¢

W GV B AR Prelegll b AREIE. gl W i S Sl s, OB W i
BRGNS SE Bul weldl BB B GISE AN . - g & dri

&7 % - i F g - e el PN ) T el
[ e T e YT Yo
& dues el niplln o
& ey it i PO
- Aoy B codhits s 0
L ] we il st s il
5 i i o,
Hunbe o~ sl scifbllp el
wave & aodfbilth el ~ iy

faame &4  Suyes < maituns Sssautts g .” Rhmeihetn: N ¢

by A R AR Gl e AR el TN | S W W ¥ e et B
oy ileEe  ouslite:  Yeiin Genrae  Bor 90 sk AU WSS e~ dguie - P e

s - . ) S s .

) » LY ) p x ] » e il - % 45 e %m £
. Sy WP AT e 2 E AT o Y T
L
LR Y - o - - - o D
. » i ) S A A il
o gt o 0D il Ly P
e T we il ~ o L 3T & Vil
e iy s oipilly e D e
trane B W il .. A A o+ A

* Y » . _» .

e m‘? Mﬁ'ﬂ « “n mﬂ“ & ‘;n - » ?m «
Yoy - v - - <
‘ m ¥ »
. ) * - - e
> "d‘ . L 4 iy oy
o ahse » [ -~ i
iy v @ 48 » ™ oy
Vo v o » -
rrane W % & e, »
Py ol e Prl g S

»w




ARS8 i e RN - it W sk - Nt S5 Whnihe v GG Nake Ssuiteid
Wi b, PO b B Wbl LNy T B b cematvion v sl & WD . Sl
v A N N Aedivis ™ - B G St G RN S gy Sl e
AR B Grrts - e W B et Wi W SRy, et & biv sReab: & s
oo S N NGRS b isviantiel - Biesw Y T e LT ak M eainditige | Mvsdail
WG @

o - G - i P R Y
Peavse. Bl dscind Al 6 2 AR et 4 ey N
e > L T |

U apaiiieh. R eI RN e ¢ AN e LT e B Ske BB el deinible O

SHININUIR Skt N W BN Gl AR 4 St - Ao A e o W tRwee Aiob UBes
e WS A & Bl G AODE RO IR b et et Fowetih. ith - 4

N Aty e AR Sisriteis ¥ iloriees Meielilait $ 0 418 M

s it LR » v
Py * v
o o - - g
P I N A et

Y e b *

Whek 13 WORE  Suteitin B S b wey v Jewcnih Bb o L S s pudibuon e Ged
gy diunnpion. - Ieaucme. B B it W R Sy

PIRHPRIN D Gy U et e W it TR * e W Tab Me AlesbbBliies  Semifle S
T I NI SOviel b - Basibt  De M bl G ST B AR SRR B W
B el F teet SRR & W diphiaie Alaalilidis  dieniii, RS T A% el g

i
Wty W i Giamer  BUecar BB et teee coabe 4 U SRRE & Bepurilially  Amcbunding
O B & Apeglie Nab gk el & B aud & S0 dand Ao - Sl e 4
SOOI TR D vt A AN A SO e 4 My ded AR Seantemis aesilaatifiee o Soe

S MR queewind § M ANE SRR G S N RS

W 4 LR SN selrel o 19 Btk ey PEagrreit  Se hr itk e
sk S S A PRE MR Py b WL et B vy o S Aue e

e I T R A R o B R R e R |
ARG gt i N N SR Gy - BRI Bl Biiiaeioh: BNl APl iy il
A en) ety Aty W R et SRS el iy Sy Aeciseppaics g

L4 ]




S &0 Nuges wmsseten Sesutte Guwy Ws 34 Yams - Taum )

Ay A NG - PEASGY B AV G AURRER Sisth B SN & 85 A PN
e AR DA A .ame o & 0 < MMM e & B, IEL Wb W5 Iraguns Sl
Sl 3 G - - ADSNS

LR ST
L ) Sinitesiing SN

Mpions - (W . .0
A mer ) A1 ¥i.-= -
Sord s 1l S0
Apiidas « il Er W o
Sy sddwré 9% A M .k
MNerly- ¥ w - ik AR
Sesde. + e 1 TN
erdie. B (W o K% o 2%
TIPS il gL P 2N
W v Lol a8 W
ot - Sl -0 - ¥ ]
e e = 9 S0
o & (N ] ®.ig w5
Py s+t A LS
Duray: # Ly » anh L3 ]
oy v 1IN - 130
oty & 1Pt 3 48 S
Solmeae B 1 + il -2
Seiman # i 1l el W ]
Selnp» ¥ L N rN n
Muaee. ¥ N - SR 15 M%
Husee 4 1% % W &% "
Mgt » (3% ] g P &L

ANprsaingd & A b WWRAMIRS o 15, X




DISCUSSION OF CLASSIFICATION RESULTS
e

Toble 4-11 Bayes Omission Results Using 5 Times the x2 Value - Trial 3

This wbis ksts G poscestegs of misclasified aad uaclassified pixels, as well as the tolal percentage
omittod , fou sach of e et sites in B2 for & threshold value of 84.05, derived from the chi-square statistic

with 6 degrees of fsodom.
dex2p(®)°s
Misclemsificd  Unclassified QOmission

Ceastruction 0.00% 41.18% 41.18%
TEC Siss 0.00% 100.00% 100.00%
Parkinnd | 0.00% 0.00% 0.00%
Wigh School 0.00% 96.43% 96.43%
Malb 0.00% 96.77% 96.77%
Portinnd 3 0.00% 14.49% 14.49%
BareSeil 0.00% 100.00% 100.00%
Flelds-A 26.40% 65.80% 92.20%
Plelds.C 0.00% 100.00% 100.00%
Flalds-D 1.89% 0.00% 1.89%
Gress-A 0.00% 60.92% 60.92%
Gress-C 3% 323% 6.45%
Leot 15.60% 0.00% 15.60%
Plae 1.53% 127% 2.80%
Read-A 1.80% 65.47% 67.27%
Ragway-C 0.00% 7.69% 7.69%
Reawey.r 0.00% 2.68% 22.68%
Swamp-A 0.00% 57.08% 57.08%
Swamp-B 0.00% 50.00% 50.00%
Urben-D 0.00% 62.96% 62.96%
Urbea-¥ 0.00% 93.33% 93.33%
Urban-l 0.00% 7.14% 7.14%
Water-Al 0.00% 0.00% 0.00%
Water-Al 0.00% 0.00% 0.00%
Water-C 0.00% 100.00% 100.00%

Percentags of test set unclassified = 27.59%
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DISCUSSION OF CLASSIFICATION RESULTS

Table 4-12 Bayes Omission Results Using 7 Times the x2 Value - Trial 3

This table lists the perceatage of misclassified and unclassified pixels, as well as the total percentage
omitted , for each of the test sites in B2 for a threshold value of 117.67, derived from the chi-square statistic

with 6 degrees of freedom.

a2<x2,,6)°7

Misclassified  Unclassified Omissi

Construction 0.00% 17.65% 17.65%
TEC Site 0.00% 100.00% 100.00%
Parkland 1 0.00% 0.00% 0.00%
High School 0.00% 85.71% 85.711%
Mall 0.00% 87.10% 87.10%
Parkland 2 0.00% 1.45% 1.45%
BareSoil 0.00% 100.00% 100.00%
Fields-A 31.10% 57.70% 88.80%
Flelds-C 7.92% 92.08% 100.00%
Flelds-D 1.89% 0.00% 1.89%
Grass-A 0.00% 39.08% 39.08%
Grass-C 323% 3.23% 6.45%
Leaf 15.60% 0.00% 15.60%
Pine 2.29% 0.25% 2.54%
Road-A 2.59% 54.09% 56.69%
Runway-C 0.00% 1.28% 1.28%
Runway-F 0.00% 13.40% 13.40%
Swamp-A 2.38% 36.96% 39.34%
Swamp-B 0.00% 8.33% 8.33%
Urban-D 0.00% 3.70% 3.70%
Urban-F 0.00% 86.67% 86.67%
Urban-I 0.00% 0.00% 0.00%
Water-Al 0.00% 0.00% 0.00%
Water-A2 0.00% 0.00% 0.00%
Water-C 0.00% 100.00% 100.00%

Percentage of test set unclassified = 21.91%
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4.5 Results of Trial 4

'IhaHmvesugatatheeffectofred mfthenumberofbands,repeanngtheamlymmatwasdone
on the modified Bayes in Trial 3 using the four Landsat TM bands B3, B4, BS, B7
rather than all six bands. Notice that the chi-square distance threshold value changes ‘because
degrees of freedom for the distribution change from six to four. However, for consistency they
were selected in the same manner: one times the chi-square distance, five times the chi-square
distance, and seven times the chi-square distance.

Table 4-13 shows the auto-classification results using only B3, B4, BS, and B7. The auto-

classification of 4 bands produced almost the same low error rate at %2, (4) as that of 6 bands,

except that the Grass-B class contained 4.17 8ercent error (compared to 0.0% for 6 bands). The
results for the other chi-squared values were 0.00 percent for all classes (identical to the results
achieved for 6 bands.

Table 4-14 shows the commission results for these four bands. The same trend of decreasing

errors for decreasing thresholds is seen. Except for the lowest threshold value %2 ;,(4) = 13.28, the
results are almost the same. For the lowest threshold, however, 81 errors occur for the Grass-B
class using 4 bands vs. 39 errors using 6 bands. Referencing the contingency table, the classifier
is calling 80 of these 81 errors Grass-B, when they should have been called D. Veg.

Based on these results, there would seem to be little impact to reducm? the bands. However, the
omission error results, listed in Tables 4-15 to 4-17, show some problems. As was the case for 6
bands, the trial for the lowest chi-squared threshold, while maintamng a low misclassification

error, resulted in mostly unclassified data. Proceeding to the next highest threshold of x2,,(4) *
5 = 66.4, more of the data was classified. Unfortunately, a large number were misclassified.

Refemng to the contingency results in Appendix B, some of the degradation in going from 6 bands
to 4 bands (for this threshold) can be compared as follows:

CLASS i.:hnd_::m 4:band error Major _cause of Probiem
TEC Site 19.23% Samples being labeled as B. Roof
High School 0.0095 60.71% Samples being labeled as B. Roof
Mall 0.00% 62.90% Samples being labeled as B. Roof
BareSoil 0.00% 73.68% Samples being labeled as B. Roof
Fields-A 26.40% 54.50% Samples being labeled as B. Roof
Road-A 1.80% 33.53% Samples being labeled as B. Roof

Apparently, the reduction in the number of bands causes confusion between the samples containing
soil and/or concrete and are being confused with the Bright Roof class, that is believed (but not yet
confirmed) to be metal. There does not seem to be a problem in confusing vegetation; however,
mixtures of soil and vegetation such as Fields-A were also confused with thxs Bright Roof class.

Based on these results, the reduction of bands from 6 to 4 cannot be recommended. Further
reduction beyond 4 bands is highly discouraged.
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DISCUSSION OF CLASSIFICATION RESULTS

4.6 Resuits of Trial §

The objsctive of this trial was to investigate the behavior of the three well-known supervised
classifiers — the Standard Bayes discriminant, the Mahalanobis distance, and the minimum
Buclidean distance — on data acquired over different seasons and years. Because of the desire to
proceed with lesting the linear mixture modeling, the modified Bayes discriminant using a
minimum variance criterion and/or chi-squared threshold was not tested. The classifiers'
performance was tested against their own training data (auto-classification), and the ground truth
Sﬁ‘l‘) iest data extracted from the i ry. Data the five mosaic datasets were used: May

987, May 1985, August 1985, r 1985, and March 1989. Therefore, the effect of different
seasons {or the same year could be studied, as well as the effect of the same season for different
years.

Resuits and discussion of the auto-classification analysis are first presented, followed by results
and discussion of classification analysis on the ground truth data (GT). A description of the
mosaic data sets, and the training set acquisition process and properties were discussed previously
in Sections 3.1 and 3.2, ly. Training statistics (mean vectors and covariance matrices)
are listed in Appendix A. detailed results for the auto-classification runs are given in

Appendix C.

Auto-classification runs were made on Training Set B2 to test the performance of the Bayesian,
Mahalanobis, and Euclidean classifiers when applied to its own training data. These runs were
ng;bd using dsta from all five mosaic images: May 1987, May 1985, August 1985, October
1983, and March 1989. Training Set B2 consists of the 20 classes numbered 100-194, as shown
in Table 3-3 (Section 3.2). During this trial, classes 8-13 were not used.

The performance of these classifiers is summarized in Table 4-18. This table shows the
puum correct hits for each class for all three methods and also the average of correct hits for
each where each class is weighted equally). Note that this summary consolidates the
results of the 20 training classes into 16 classes by combining the three field classes (Fields-A,
Fields-B, And Fiel into a class called Fields, and combining the three water classes (Water-
Al, Water-A2, And Water-C) into a class called Water. Appendix C contains a table showing the
results without the consolidation.

The results are reported with this consolidation because we did not want to penalize the classifiers
for confusion between similar classes that would eventually be consolidated by subsequent

rations. We could have similarly combined many of the others (such as road and runway);
however, the performance was so it did not seem necessary, and in addition, the ability of the
classifiers to maintain separability between such fine classes provides additional insight into their
behavior.

The Bayesian discriminant classifier proved to be the best of the three methods. The Bayesian
results were consistent across all five dates tested. The overall performance, as well as the
performances of all individual cases, was excellent. Bg' consolidating only field classes and water
classes, the average percentages of error were 1.95%, 1.27%, 0.72%, 2.82% and 3.68%
for May 87, May 85, August 85, Oct 85, and March 89, respectively. The highest error for any
individual class occurred in the March 89 data for Leaf and had a value of 11.20 percent.
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DISCUSSION OF CLASSIFICATION RESULTS

The second best classifier proved to be the Mahalanobis distance classifier. Generally, the
performance was very good, with most errors below lo.gferoent. The average percentages of
error were 5.35%, 2.81%, 0.96%, 4.83%, and 11.03% for the five dates. However, the
consistency between dates was not as good. For example, the Grass-B class maintained an error
rate of less than 10.0 percent for all dates except March 89, for which it increased to 50%. The
co nding contingency table (not shown) reported that 41.67 % (10 out of 24 samples) of the
Grass-B samples were incorrectly labeled as Leaf. Two other relatively poor performers for this
March 1989 data were Grass-A at 21.84% and Grass-C at 32.26%; however, they are not as
bad as they seem. The Mahalanobis classifier (incorrectly) labeled 20.69% (18 out of 87) of the
Grass-A samples, and 32.26% ( 10 out of 31) as Fields-A. If the Grass-A and Fields-A were later
consolidated, the 87 Grass-A samples would have a 1.5% error rate. If the Grass-C and Fields-A
were later consolidated, the 31 Grass-C samples would have a 0.0% error rate.

Although not as good as the above two methods, the Euclidean distance classifier provided very
good results, althoufh somewhat lower and less consistent. The average percentages of error were

13.20%, 8.19%, 4.64%, 14.56%, and 21.59% for the five dates. Again consistency
among dates and individual cases was not as good as for the Bayesian method.

Table 4-18 Auto-Classification Summary for Training Set B.

Field Classes Combined and Water Classes Combined

Training Data MY87_1000Samples | Tralning Data MYS85_1000Samples

Bayes Mahalanobis | Euclidean Bayes Mabhalanobis | Euclidean
Baresoil 0.00% 0.00% 0.00% 0.00% 0.00% 2.63%
Flelds 8.70% 2.49% 63.88% 7.95% 2.65% 39.27%
Grass-A 2.30% 5.75% 2.30% 1.15% 12.64% 1.15%
Grass-B 0.00% 8.33% 16.67% 0.00% 0.00% 12.50%
Grass-C 0.00% 16.13% 16.13% 0.00% 3.23% 6.45%
Leaf 3.10% 27.30% 8.20% 1.30% 1.80% 6.50%
Pine 2.80% 8.14% 10.69% 2.80% 12.72% 17.56%
Road-A 8.38% 10.98% 30.34% 3.99% 6.99% 19.36%
Runway-C 5.13% 5.13% 5.13% 1.28% 1.28% 0.00%
Runway-F 0.00% 0.00% 4.12% 0.00% 0.00% 0.00%
Swamp-A 0.45% 0.30% 30.40% 134% 3.13% 9.84%
Swamp-B 0.00% 0.00% 16.67% 0.00% 0.00% 8.33%
Urban-D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Urban-F 0.00% 0.00% 6.67% 0.00% 0.00% 0.00%
Urban-I 0.00% 0.00% 0.00% 0.00% 0.00% 7.14%
Water 0.99%

Average
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Figure 13. Observed Spectra of Swamp and Candidate Endmembers

Table 4-21 lists the domain limits for some of the endmember combinations. In this table, the
mixture (Swamp C174) is placed in the middle of two endmembers. For the endmembers to be
completely compliant with the first physical constraint, the Swamp response must lie within the
interval defined by the endmember pair for all bands.

Table 4-22 lists the full regression results for one of the endmember models of Swamp C174.
Note that both a model with a constant term and without a constant term was generated. This

is used for all the various combinations. For each combination, the model witha
constant is generated. If the constant is found insignificant, it is dropped. For the model to be
physically riate this must indeed be true. As it turns out, the constant was found to be
insignificant in almost all the cases. The detailed regression results are listed in Appendix D.
Although only a few examples of the models with a constant are listed, they were indeed tested,
and the constants were found to be insignificant.

Regression models are computed with diagnostic statistics for each of the pairwise endmember
combinations. An F-ratio is used to assess the statistical significance of a model. If none of the
candidate endmember pairs had produced a statistically significant model, then the model would

have beet;:;fmded to include additional endmembers (up to a 4-component model). However, all

the trials uced statistically significant pairwise models.
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Table 4-21 Pairwise Domain Limits Surrounding Swamp

Declduous Comments on Domain Limits

Bl C174 2 Cl3

MYS8S Water Swamp
B1 103.27 98.4
B 3791 35.439
B3 348 35.709
B4 19 44.81
BS 13.72 37.624
B7 7.47 14,984

MYS8S Water Swamp

B1%0 C174
B1 103.27 98.4
B2 3791 35.439
B3 3486 35.709
B4 19 44.81
BS 13.72 37.624
B7 7.47 14.984
MYS8S Water Swamp
B1% €174
Bl 103.27 98.4
2 7] 3791 35.439
B3 3486 35.709
B4 19 44.81
BS 13.72 37.624
B7 7.47 14,984
MYS85 Water Swamp
B1% Cl74
Bl 103.27 98.4
B2 3791 35.439
B3 3486 35.709
B4 19 44.81
BS 13.72 37.624
B7 747 14.984
MYS85 Asphalt Swamp
B160 C174
Bl 126.04 98.4
B 4849  35.439
B3 5486 35.709
B4 39.62 44.81
BS 5212 37.624
B7 31.56 14.984

89.95
33.884
28.134  Slightly Outside Interval
146.475
77.442
19.439

Concrete
Bi62
180.42  Outside Interval
94.74  Slightly Outside Interval
136.23
114.43
182.9
104.94

Grass
Cla
103.794  OQutside Interval
42.265  Slightly Outside Interval
38.735
149.794
114.853
36.<:8

Asphalt

B160

126.04  OQutside Interval

48.49  Slightly Outside Interval
54.86

39.62  Outside Interval

52.12

31.56

Deciduous
€133
89.95
33.884
28.134
146.475
77.442  Significantly Outside Interval
19.439  Outside Interval
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Table 4-22 Regression Results for One of the Endmember Models of Swamp

This table shows the regression results and analysis of variance (ANOVA) tabies for a Linear Model of Swamp C174 that is
comprised of a mixture of Leaf C133 and Water B190. The resuits are generated for a linear model both with and without »
constant.

DEP VAR: faeanp C174 B 6 MULTIPLE Ri 0.990 SQUARED MULTIPLE R: 0.981
ADJUSTED SQUARED MULTIPLE Rs 0.968 STANDARD ERROR OF ESTIMATE: $.027
VARIABLE COEFFICIENT 8TD ERROR 8TD CORP TOLERANCE k3 P(2 TAIL)
CONSTANT 5.993 4.123 0.000 . 1.454 0.242
Leaf C133 0.196 0.047 0.337 0.977 4.184 0.023
Water B190 0.710 0.063 0.881 0.977 10.934¢ 0.002

AMALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES  DF NEAN-SQUARE P-RATIO ’
REGRESSION 3907.349 2 1953.67¢ 11.308 0.00)
RESIDUAL 75.814 3 25.2711

MODEL CONTAINSG MO COMSTANT.

DEP VAR: S _C174 M1 6 NULTIPLE R: 0.996 OSQUARED WULTIFLE R 0.992
ADJUSTED SQUARED MULTIPLE R: 0.990 STANDARD ERROR OF ESTIMATE: $.684

VARIABLE COEBFFICIENT STD ERROR #7TD CORP TOLERANCE T P{2 TAIL)
Leaf €133 0.241 0.040 0.372 0.%42 6.066 0.004
Water 8190 0.7%3 0.063 0.70¢ 0.%42 11.300 0.000

ANALYSIS OF VARIANCE

SOURCE  SUM-OP-SQUARES  DF NEAN-SQUARS P-RATIO ’
REGRESSION 15732.427 2 7066.214 240812 0.000
RESIDUAL 129.210 ‘ 32.302
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CONCLUSIONS

5.0 CONCLUSIONS

5.1 Conclusions Regarding the Graphical Analysis

The graphical analysis indicated a ible degeneracy in the spectral space defined by broad-band
spectral sensors (such as Landsat , where a mixture of materials could combine to form a
signature identical to the signature of certain pure pixels. In particular, coniferous and deciduous
trees were observed to lie in a region of spectral space occupied by certain mixtures of water and
vegetation (e.g. certain types of swamp). For such situations, no algorithm, regardless of its
complexity, will ng::sate such classes. The spectral information just simply doesn't exist to
dnstmgwsz them. This provides motivation for using narrow-band spectral imagery, consisting of
higher spectral resolution and more bands.

The addition of more spectral bands with increased spectral resolution, hopefully, can eliminate the
degenerate cases. However, there is no guarantee that this approach will be successful. The

ﬂ[ing spectra might be quite bland and not contain distinguishing absorption features.
Therefore, incorporating such data, although more volumous, would not necessarily provide
increased spectral information.

§.2 Conclusions Regarding the Spectral Classification

Performance of the conventional classifiers as typically applied to Landsat TM is unacceptable for
the general application of extracting natural and manmade features. The most disturbing behavior
of the conventional Bayesian and Mahalanobis classifiers was the tendency to mislabel water and
marsh/swamp features in a scene as asphalt. This type of error has serious consequences to
military and environmental applications (e.g. A convoy of jeeps and trucks would prefer to stay on
the roads and not drive into a swamp). In this regard, the Euclidean classifier performed much
better.

The Euclidean minimum distance classifier performed better at not mislabeling water features.
However, it did not perform as well as the Bayesian or Mahalanobis classifier for many other
features.

In many cases, the problems found with the conventional classifiers were not due to a lack of
arability between materials or a lack of spectral resolution. The problem was often one
(or a combination) of the following:

a. Correspondence between the objects of interest in a scene and the materials (the classifier is classifying
the materials, not the objects).

b. Correspondence between the samples in the scene and the available prototype classes because there is an
insufficient number of prototype classes.

c. Samples in the scene are mixtures of materials represented by the prototype classes.

d. Difficulties with covariance matrices modeling the spectral variance of certain classes, particularly,
water.
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CONCLUSIONS

The performance of the Bayesian and Mahalanobis classifier was improved to an acceptable level
by using a minimum variance criterion on class covariances and a chi-squared rejection criterion.

a. The use of s minimum variance criterion was shown to correct the problems associated with modeling
the spectral variance of water.

b. The use of a chi-squared rejection allowed samples that did not correspond to a prototype class or that
correspond to a mixture of classes to be rejected. The error rate was reduced dramatically, labeling as
unknown those samples that were previously misclassified.

c. The chi-squared rejection criterion, as sometimes implemented on other systems, is not acceptable.
Often times, there is the need to allow a larger rejection distance than what is available. The software
written during this effort allows the use of such larger rejection distances.

The chi-squared rejection criterion would be particularly useful for targeting applications. An
analyst could train on a specific ground feature of interest. By invoking a tight threshold distance,
the analyst would have a very high degree of confidence that any ground feature identified as the
target material was indeed classified correctly.

Reducing the number of Landsat TM bands from six to four, significantly increased both
commission and omission classification errors.

Clearly, more work needs to be done in studying the effect of season and year on classification
performance. The existing multidate/multiscene montage data are in a suitable form to study this
effect since numerous training, test, and ground truth sites have been extracted. However, the task
was beyond the level of effort that could be allocated. Other technical issues have presented
themselves that should be addressed first.

In particular, the lack of consistency and wide swings in performance for the Euclidean minimum
distance and conventional Bayesian classifier suggest some fundamental instabilities. Two
candidate sources are (1) inadequate estimates of the class covariance matrices introduced by
quantization effects and outliers in the training samples, and (2) violations of model assumptions
and possible degeneracies in the spectral space introduced by mixtures as well as changes in
mixing proportions of aggregate materials (e.g. swamps).

The modified Bayes approach has taken some steps to overcome these problems. The minimum
variance criterion seems to have corrected the problem of quantization effects (small variance) on
the covariance estimates, and the chi-squared rejection threshold flags potential mixture candidates.
Therefore, what remains is to incorporate a mechanism for reducing the effect of outliers on the
covariance estimates, and a method to handle mixtures.

The experience gained in this effort should be useful to future spectral sensing work involving
higher spectral resolution data. In particular, the variance of spectral components is likely to have
an adverse effect on any algorithm that does not appropriately incorporate this phenomena. For
example, it becomes quite clear from observing the signatures of various grass sites that there is no
unique grass signature. Similarly, there is no unique water signature; no unique field signature; no
unique asphalt signature; etc. Unless one is looking for unique absorption features of a specific
material, 1t will become necessary to incorporate variance. If a reference library of spectral data is
used in the processing, the spectral variance of materials must be incorporated in or be computable
from the library.

Also remember that many of the classification errors occurred because either the samples in
question did not correspond to a prototype class, or they were mixtures of the materials represented
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APPENDIX A: Supperting Statistical Data

of the Taining classes in Dutasets A aad B.
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Toble A3  Class Mesn Vectors for the Classes in Dotacet B - May 198
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107.00
8 74
106 16
nn
66.92
43 68
96 94
664
83.50
96.44
8767
109.43
28.94
3295
4.7

106 20
nn
W

106 43

zn
nm»

1
A )
)47
81 60
4.8

161 .M
45.60
69.78

158.19

134.40

162.71
13.37
14.20
20.54

33

101 84
26 0
2%
nmn
30 8)
26 08
526
18 462
1524
41 64
26 %
9%€0.23
13.55
21.67

10711
65.20
93.50

4.76
5.04
7.92




APPENDIX A

Table AS Class Mesa Vectors for the Classes in Dataset B - Oct 1985
| 3} | 7 R | T} BS B2

Bareseld 8.9 L) 80.32 72.18 12705 66.55
Vislds-A 74.85 3113 42338 423 90.91 44.32
Fielde-C 66.51 2764 26.98 mn 7420 24.90
Visids-D 67.15 21.74 2568 .n 82.02 2545
Grass-A nw 30.00 3158 77.10 84.67 29.70
Gress-8 64.33 26.17 2754 58.63 59.42 20.63
Gress-C .26 0. 468 T .61 93.74 34.10
Lasf 6180 3.2 229 6531 $1.38 14.62
Pine 61.46 22.06 2033 H.7 34.04 10.87
Resd-A 88 .94 40.82 4255 5431 28.11
Reawsy-C 1468 26.42 228.06 19.92 28.00 18.33
Resway-¥ 131.9% M» 98.19 82.87 131.04 73.29
Swamp-A 582 3.4 25.683 3058 39.58 15.28
Swamp-B 65.67 24.00 3.17 M2 40.42 16.58
Urbes-D 1533 "nn 102.11 76.13 124.89 84.48
Urbea-f 136.67 64.13 8187 67127 93.67 44.53
Urbae-{ 109.14 $3.36 76.00 5993 9336 $0.79
Water-Al 65.17 274 19.58 857 388 1.62
Water-Al 60.08 20.70 18.64 8.42 368 1.46
Water-C 100.92 4754 50.62 1739 78S 3.62

Table A6 Class Mean Vectors for the Classes in Dataset B - March 1989
a | ¥} | R} R4 | ¥ B

Bareselil 103.16 s 88.61 7529 14163 76.40
Flelds-A 100.17 4520 $1.28 7091 107.79 48.35
Flelds-C 110.20 4.0 63.99 62.84 107.06 4877
Flelds-D 126.27 5438 T30 84.3) 123.81 51.85
Grass-A 100.5) 4a.m 54.45 6466 105.61 4489
Grass-B 94.21 38.88 48.75 $2.46 97.67 42.79
Grass-C 100.35 44.19 58.74 66.61 130.42 56.58
Las! 9593 31.76 46.40 5130 87.54 37.31
Piae 89.91 35.28 36.86 55.41 51.97 19.62
Road-A 105.42 44.3) $4.62 43.75 68.76 37.68
Renway-C 101.91 4039 46.03 3290 44.58 26.97
Reawsy-F 13733 66.96 9334 7589  124.67 67.23
Swamp-A 86.00 32.60 35.78 29.76 41.04 17.51
Swamp-B 8213 29.92 29.17 24.17 2183 10.17
Urbsa-D 156.96 76.26  103.74 7682 129.74 82.41
Urbea-F 1417 671.73 89.33 7133 11513 55.33
Urbaa-1 135.57 69.07 96.43 7429 12093 68.93
Water-Al 86.63 31y 30.20 15.89 6.93 3.42
Water-A2 86.49 33.63 31.03 1538 537 2.38
Water-C 115.85 54.15 58.85 2123 9.92 423
79




APPENDIX A

Table A7 Covariance Matrices for Classes in Dataset A - May 1987

Water 1

B. Roof

D. Veg

C. Veg

B1
B2
B3
B4
BS
B7

Bl
B2
B3
B4
BS
B7

B1
B2
B3
B4
BS
B?

Bi
B2
B3
B4
BS
B7

Rl
4.23

1.73
1.53
1.92
358
2.01

0.42
-1.86
-3.70
-2.76
-4.88
-2.13

1.42
037
0.23
2.15
0.19
0.13

1.93
-0.06
0.27
-1.66
042
0.21

B2
1.73

1.3§
092
0.78
1.68
1.08

Rl
-1.86
424.09
508.94
45023
466.51
217.16

037
0.69
032
0.86
0.65
0.22

-0.06
0.62
-0.01
0.51
0.34
0.14

). K]
1.53
0.92
1.69
-0.38
0.44
0.43

B3
-3.70

508.94
643.30
549.00
563.84
254.03

0.23
032
0.62
0.10
0.60
0.33

0.27
-0.01
0.80
-1.45
-038

0.14

B4
192
0.78
-0.38
9.07
9.59
4.63

B4
-2.76

450.23
549.00
486.40
504.66
230.85

2.15
0.86
0.10
29.69
7.97
0.27

-1.66
0.51
-1.45
17.27
5.70
0.74

B3
3.58
1.68
0.44
9.59
14.60
6.67

B3
-4.88

466.51
563.84
504.66
826.54
369.17

0.19
0.65
0.60
7.97
8.86
1.47

-0.42
0.34
-0.38
5.70
8.72
2.03

B
2.01
1.08
0.43
4.63
6.67
4.38

B1
-2.13
217.16
254.03
230.85
369.17
174.88

0.13
0.22
0.33
0.27
1.47
1.12

0.21
0.14
0.14
0.74
2.03
1.49




Asphalt

Concrete

Water 2

Grass - A

Covarlance Matrices for Classes in Dataset A (continued)

B1
B2
B3
B4
BS
B7

B1
B2
B3
B4
BS
B7

B1
B2
B3
B4
BS
B7

B1
B2
B3
B4
BS
B?

Bl
24.87

10.71
16.05
2.23
8.62
5.12

39.68
16.83
16.92

343
6.37
4.00

B2
10.71

6.60
8.83
341
5.63
3.00

16.83
11.80
14.64
3.84
11.20
7.61

-0.29
0.39

0.06
-0.14
-0.19
-0.13

13.32
9.72
17.38
14.93
20.85

9.22

B
16.05

8.83
14.06
4.08
8.05
4.65

16.92
14.64
23.67
6.37
21.80
16.31

0.26
0.06
0.48
-0.15
-0.01
0.03

25.73
17.38
35.89
29.08
38.58
17.72

81

B4
2.23

341
4.08
13.51
8.82
2.78

343
3.84
6.37
4.91
8.40
4.94

0.02
-0.14
-0.15
0.68

0.10

0.07

17.55
14.93
29.08
69.41
17.57
-7.49

BS
8.62
5.63
8.05
8.82
13.05
4.81

637
11.20
21.80

8.40

34.82
23.36

0.27
-0.19
-0.01

0.10
0.97

0.00

32.76
20.85
38.58
17.57
75.51
39.33

B1
5.12

3.00
4.65
2.78
4.81
4.14

4.00
7.61
16.31
4.94
23.36
21.30

0.21
-0.13
0.03
0.07
0.00
0.69

16.67
9.22
17.72
-7.49
3933
28.88

APPENDIX A




APPENDIX A

Table A8 Correlation Matrices for Classes in Dataset A - May 1987

Water 1

Ruof

. Veg

. Veg

B1
B2
B3
B4
BS
B7

B1
B2
B3
B4
BS
B7

Bl
B2
B
B4
Bs
B7

Bl
B2
B3
B4
Bs
B?

Bl
1.00

0.73
0.57
031

0.47

1.00
0.14

0.19

1.00

0.2s
0.3
0.0
0.10

-0.10
0.12

) 7]
0.73

1.00
0.61
0.22
038
0.44

0.14
1.00
0.97
0.99
0.79

037
1.60
0.49
0.19
0.26

0.08
1.00
Q.0
0.16
0.14
0.14

R
0.57

0.61
1.00
0.10
0.09
0.16

097
1.60
0.98
on
0.7

0.49
1.00
0.02
0.26

0.2
0.01
1.0
039
-0.14

0.13

B4
031

o2
-0.10
1.00
0.5
0.7

0.19
o9
0.98
1.00
0.80
o

| 1
0.46

038
0.09
083
1.00
0.8

0
on
080
1.00
o

0.08
026
2.26
0.49
1.99
0.7

.10
0.14
Q.14
0.46
1.00
0.36

¥
0.47

0.44
0.16
.73
[ L
1.00

023
Q.86
076
ar
oM
1.0

010
023
0
0 Qs
on
1.60

on
0.14
013}
Qs
036
1.00
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Costingsscy Tabis Resuits for Trisl #1 (comtinued)

Tabie B2 - ii
MAHALANOBIS CONTINGENCY RESULTS - Test Dots = Set B2

APPENDIX B

Water | B. Reof D. Veg C. Veg Asphalt Concete Water 2 TOTAL

Construstion 0 0 0 0 34 0 0
TEC Sise 0 0 0 0 ] 26 0
Poskined 1} 0 0 60 0 0 0 0
High Sehool 0 0 0 0 4 24 0
Maill 0 (1] 0 0 3 29 0
Pastiined 2 0 0 & 0 0 0 0
Sareseil o 0 0 0 0 3s 0
Rictds-A 0 0 260 1 146 593 0
Fislds-C 0 0 0 0 48 53 0
Fisids-D o 0 108 0 1 0 0
Crenn-A 0 0 0 0 3s 52 0
GCrans-8 (1] o 23 0 1 0 0
Gramn-C ) o 29 0 2 0 0
Lont 0 0 58 42 (1] 0 1]
Pise 0 0 P 387 4 0 0
Resd-A 1] (] 1 2 432 66 0
Reaswey.C 0 0 0 0 78 0 0
Reswey-¥ 0 0 o 0 o 7 0
Swemp-A L ¥ ] 0 ] s 527 0 4
Swemp-9 ] 0 ] 4 8 0 [ ]
Urban-0 0 ¢ 0 0 [ ] 27 0
Urbne-¥ 0 [ 0 0 7 8 0
Urbae-i 0 [ ] 0 0 ¢ 14 0
Watsr-Al 1 0 0 0 182 0 799
Water-Al ) 0 0 0 27 0 9713
Water-C i 0 0 0 2 0 0

34
26
60
28
62
69
38
1000
101
106
87
24
31
1000
393
501
78
97
671
12
27
15
14
1000
1000
13




APPENDIX B

Contingency Table Results for Trial #1 (continued)

Table B2 - iii
EUCLIDEAN CONTINGENCY RESULTS - Test Data = Set B2

Water 1 B. Roof D. Veg C. Veg Asphalt Concete Water 2 TOTAL

Construction 0 0 0 18 16 0 0 34
TEC Site 0 0 0 0 13 13 0 26
Parkland 1 0 0 59 1 0 0 0 60
High School 0 0 0 0 15§ 13 0 28
Mall 0 0 0 0 44 18 0 62
Parkland 2 0 0 69 0 0 0 0 69
BareSoil 0 0 0 0 37 1 0 38
Fields-A 0 0 344 23 532 101 0 1000
Fields-C 0 0 0 0 49 52 0 101
Fields-D 0 0 106 0 0 0 0 106
Grass-A 0 0 67 4 16 0 0 87
Grass-B 0 1] 24 0 0 0 0 24
Grass-C 0 0 31 0 0 0 0 31
Leaf 0 0 945 55 0 0 0 1000
Pine 0 0 0 393 0 0 0 393
Road-A 0 0 5 13 475 8 0 501
Runway-C 0 0 0 1] 78 0 0 78
Runway-F 0 0 0 0 0 97 0 97
Swamp-A 67 0 0 360 12 0 232 671
Swamp-B 0 4] 0 12 0 0 0 12
Urban-D 0 0 0 0 0 27 0 27
Urban-F 0 0 0 0 7 8 0 15
Urban-I 0 ] 0 0 0 14 0 14
Water-Al 113 0 0 0 0 0 887 1000
Water-A2 0 0 0 0 0 0 1000 1000
Water-C 13 0 0 0 0 0 0 13
87




APPENDIX B

Table B3 Contingency Table Results for Trial #2

Table B3 - i

BAYES CONTINGENCY RESULTS - Test Data = Set B2

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-A TOTAL
Construction 0 0 0 0 28 0 0 9 34
TEC Site 0 0 0 0 0 4 0 22 6
Parkland 1 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 3 22 0 3 28
Mall 0 0 0 0 30 23 0 9 62
Parkisnd 2 0 0 1 0 0 0 0 63 69
BareSoil 0 0 0 0 0 33 0 s LY ]
Fields-A 0 0 260 1 0 104 0 €3S 16060
Fields-C 0 0 0 1] 0 50 0 s} 10}
Fields-D 0 0 76 0 0 0 0 e 109
Grass-B 0 0 7 0 0 0 0 17 l¢
Grass-C 0 0 18 0 0 0 0 ] ) 3
Leaf 0 0 928 14 0 0 0 11 1]
Pine 0 0 2 346 0 0 0 a4 ’e)
Road-A 0 0 1] 0 3zs 1? 0 139 LY X
Runway-C 0 0 0 0 78 (1] o a pX |
Ruaway-F 0 0 0 0 0 L B ) 0 4 t
Swamp-A 45 0 ] 77 309 0 ¢ 13 "
Swamp-B ] 0 L 1 (1] 0 o B | 12
Urban-D 0 [ ] 0 0 o b g G ¢
Urban-F 0 ] 0 0 7 ] 4 14
Urbaa-l 0 o 0 0 [ 14 Q 3@
Water-Al 19 0 o 0 169 1] 12 & 1000
Water-A2 ] 0 0 (1] 26 0 %4 ¢ 108¢
Water-C 11 0 0 0 2 Q ® 4 12
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APPENDIX B
Contingency Table Results for Trial #2 (continued)
Table B3 - iii
EUCLIDEAN CONTINGENCY RESULTS - Test Data = Set B2
CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-A TOTAL
Construction 0 0 0 18 16 0 0 0 34
TEC Site 0 0 0 0 0 9 o 17 26
Parkland 1 0 0 59 1 0 0 0 0 60
High School 0 0 0 0 2 6 0 20 28
Mall 0 0 0 0 29 13 0 20 62
Parkiand 2 0 0 57 0 0 0 0 12 69
BareSoil 0 0 0 0 0 0 0 38 3s
Fields-A 0 0 265 1 11 61 0 662 1000
Filelds-C 0 0 0 0 36 50 0 1§ 101
Fields-D 0 0 104 0 0 0 0 2 106
Grass-B 0 0 23 0 0 0 0 1 24
Grass-C 0 0 28 0 0 0 0 3 31
Leaf 0 0 945 55 0 0 0 0 1000
Pine 0 0 0 392 0 0 0 1 393
‘Road-A 0 0 1 7 354 0 0 139 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 0 0 96 0 1 97
Swamp-A 67 0 0 360 11 0 232 1 671
Swamp-B 0 0 0 12 0 0 0 0 12
Urban-D 0 0 0 0 0 27 (¢] g 27
Urban-F 0 0 0 0 6 8 0 1 15
Urban-I 0 0 0 o 0 14 0 0 14
Water-Al 113 0 0 0 0 0 887 0 1000
Water-A2 0 0 0 0 0 0 1000 0 1000
Water-C 13 0 0 0 0 0 0 0 13
90




APPENDIX B
Table B4 Contingency Table Results for Trial #3
Table B4 - i
MODIFIED BAYES CONTINGENCY RESULTS - Test Data = B2 with xz(ﬁ) =16.81
MinVar = 16 on Water; MinVar=3 on other classes
CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B NULL
Coastruction 0 0 0 0 0 0 0 0 34
TEC Site 0 0 0 0 0 0 0 0 26
Parkland 1 0 0 33 0 0 0 0 0 27
High School 0 0 0 0 0 0 0 0 28
Mall 0 0 0 0 0 0 0 0 62
Parkiand 2 0 0 0 0 0 0 0 0 69
BareSotil 0 0 0 0 0 0 0 0 38
Fields-A 0 0 9 0 0 0 0 0 991
Fields-C 0 0 0 0 0 0 0 0 101
Fields-D 0 0 0 0 0 0 0 34 72
Grass-A 0 0 0 0 0 0 0 0 87
Grass-C 0 0 0 0 0 0 0 6 25
Leaf 0 0 712 0 0 0 0 39 249
Pine 0 0 0 262 0 (] 0 0 131
Road-A 0 0 0 0 67 0 0 0 434
Runway-C 0 0 0 0 0 0 0 0 78
Runway-F 0 0 0 0 0 2 0 0 95
Swamp-A 0 0 0 0 0 0 6 0 665
Swamp-B 0 0 0 0 0 0 0 0 12
Urban-D 0 0 0 0 0 0 0 0 27
Urban-F 0 0 0 0 0 0 0 0 15
Urban-I 0 0 0 0 0 3 0 0 1
Water-Al 4 0 0 0 0 0 870 0 126
Water-A2 0 0 0 0 0 0 993 0 7
Water-C 0 0 0 0 0 0 0 0 13
TOTAL 4 0 754 262 67 5 1869 79 3423

91




Table B4 - i

MODIFIED BAYES CONTINGENCY RESULTS - Test Data = B2 with %2(6) = 84.05

Centingency Table Results for Trial #3 (continued)

MinVar = 16 on Water; MinVar=3 on other classes

APPENDIX B

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B NULL
Coastruction 0 0 0 0 20 0 0 0 14
TEC Site 0 0 0 0 0 ] 0 0 26
Parkiaad 1 0 0 60 0 0 0 0 0 0
High School 0 0 0 0 0 1 0 0 27
Mall 0 0 0 0 1 1 0 0 60
Parkisnd 2 0 0 0 0 0 0 0 59 10
BareSoil 0 0 0 0 0 0 0 0 38
Flelds-A 0 0 261 0 0 3 0 78 658
Flelds-C 0 0 0 0 0 0 0 0 101
Flelds-D 0 0 2 0 0 0 0 104 0
Grass-A 0 0 0 0 0 0 0 34 53
Grass-C 0 0 1 0 0 0 0 29 1
Leaf 0 0 844 23 0 0 0 133 0
Pine 0 0 2 3s2 0 0 0 4 5
Road-A 0 0 0 0 164 0 0 9 328
Runway-C 0 0 0 0 72 0 0 0 6
Ruaway-F 0 0 0 0 0 758 0 0 22
Swamp-A 74 0 0 51 0 0 163 0 383
Swamp-B 0 0 0 ] 0 0 0 1 6
Urban-D 0 0 0 0 0 10 0 0 17
Urban-F 0 0 0 0 0 1 0 0 14
Urban-1 0 0 0 0 0 13 0 0 1
Water-Al 110 0 0 0 0 0 890 0 0
Water-A2 0 0 0 0 0 0 1000 0 0
Water-C 0 0 0 0 0 0 0 0 13
TOTAL 184 0 1170 461 287 104 2053 451 1783
92




APPENDIX B

Contingency Table Results for Trial #3 (continued)

Table B4 - iii

MODIFIED BAYES CONTINGENCY RESULTS - Test Data = B2 with x2(6) = 117.67
MinVar = 16 on Water; MinVar=3 on other classes

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B NULL
Construction 0 0 0 0 28 0 0 0 6
TEC Stte 0 0 0 0 0 0 0 0 26
Parkiand 1 0 0 60 o 0 0 0 0 0
High School 0 0 0 0 0 4 0 0 24
Mall 0 0 0 0 3 5 0 0 54
Parkland 2 0 0 0 0 0 0 0 68 1
BareSoil 0 0 0 0 0 0 0 0 38
Flelds-A 0 0 261 0 0 50 0 112 577
Flelds-C 0 0 0 0 0 8 0 0 93
Fields-D 0 0 2 0 0 0 0 104 0
Grass-A 0 0 0 0 0 0 0 53 34
Grass-C 0 0 1 0 0 0 0 29 1
Leaf 0 0 844 23 0 o 0 133

Pine 0 0 2 383 0 0 0 7 1
Road-A 0 0 0 0 217 0 0 13 2N
Runway-C 0 0 0 0 77 0 0 0 1
Runway-F 0 0 0 a 0 84 0 0 13
Swamp-A 84 0 0 107 16 0 215 1 248
Swamp-B 0 0 0 6 0 0 0 s 1
Urban-D 0 0 0 0 0 26 0 0 1
Urban-F 0 0 0 0 0 2 0 0 13
Urban-I 0 0 0 0 0 14 0 0 0
Water-Al 110 0 0 0 0 0 8§90 0 0
Water-A2 0 0 0 0 0 0 1000 0 0
Water-C 0 0 0 0 0 0 0 0 13
TOTAL 194 0 1170 519 341 193 21058 525 1416
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APPENDIX B
Contingency Table Results for Trial #3 (continued)
Table B4 - iv
MODIFIED BAYES CONTINGENCY RESULTS - Test Data =Set B2 ; with x2(6) =00
MinVar=16 on Water; MinVar = 3 on other classes
CLASS Water 1 B.Roof D. Veg C. Veg Asphait Concrete Water 2 Grass-B | TOTAL
Construction 0 0 0 0 33 0 0 1 34
TEC Site 0 0 0 0 0 25 0 1 26
Parkland 1 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 4 24 0 0 28
Mall 0 0 0 0 a3 28 0 1 62
Parkland 2 0 0 0 0 0 0 0 69 69
BareSoil 0 0 0 0 0 38 0 0 38
Fields-A 0 0 261 0 20 412 0 307 1000
Fields-C 0 0 0 0 17 52 0 32 101
Fields-D 0 0 2 0 0 0 0 104 106
Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 1 0 0 0 0 30 31
Leaf 0 0 844 23 0 0 0 133 1000
Pine 0 0 2 383 0 0 0 8 393
Road-A 0 0 0 0 407 59 0 35 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 o 0 97 0 0 97
Swamp-A 88 0 0 174 102 0 229 78 671
Swamp-B 0 0 0 6 0 0 0 6 12
Urban-D 0 0 0 0 0 27 0 0 27
Urban-F 0 0 0 0 7 8 0 0 18
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 110 0 0 0 0 0 890 0 1000
Water-A2 0 0 0 0 0 0 1000 0 1000
Water-C 13 0 0 0 0 0 0 0 13
TOTAL 211 0 1170 586 701 784 2119 892 6463
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Contingency Table Resuits for Trial #3 (continued)

APPENDIX B

Table B4 v

STANDARD BAYES CONTINGENCY RESULTS - Test Data = Set B2 (No minimum variance or rejection criteria)

CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B | TOTAL
Construction 0 0 0 0 33 0 0 1 34
TEC Site 0 0 0 0 0 25 0 1 26
Parkland 1 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 4 24 0 0 28
Mall 0 0 0 0 33 28 0 1 62
Parkland 2 0 0 0 0 0 0 0 69 69
BareSoil 0 0 (1] 0 0 kX ] 0 0 38
Fields-A 0 0 241 1 21 418 0 319 1000
Fields-C 0 0 0 0 17 52 0 32 101
Fields-D 0 0 1 0 0 0 0 108 106
Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 0 0 (1] 0 0 31 31
Leaf 0 0 806 22 0 0 0 172 1000
Pine 0 0 2 378 0 0 0 13 393
Road-A 0 0 0 0 408 60 0 33 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 o 0 0 0 917 0 0 97
Swamp-A 45 0 0 108 446 0 4 68 671
Swamp-B 0 0 0 3 0 0 0 9 12
Urban-D 0 0 0 0 0 27 0 0 27
Urban-F 0 0 0 0 7 8 0 0 158
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 19 0 (1] (1] 169 0 812 0 1000
Water-A2 0 0 0 0 26 0 974 0 1000
Water-C 11 0 0 0 2 0 0 0 13
TOTAL 758 0 1110 512 1244 791 1790 941 6463
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APPENDIX B
Contingency Table Results for Trial #3 (coatinued)
Table B4 - vi
MAHALANOBIS CONTINGENCY RESULTS - Test Data = Set B2
CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B | TOTAL
Construction 0 0 0 0 33 0 0 1 34
TEC Site 0 0 0 0 0 25 0 1 26
Parkland 1 0 0 60 0 0 0 0 0 60
High School 0 0 0 0 4 24 0 0 28
Mall 0 0 0 0 33 28 0 1 62
Parkland 2 0 0 0 0 0 0 0 69 69
BareSoil 0 (1] 0 0 0 s 0 0 3s
Fields-A 0 0 222 1 20 420 0 337 1000
Fields-C ) 0 0 0 16 52 0 33 101
Fields-D 0 0 0 0 0 0 0 106 106
Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 0 0 0 0 0 31 31
Leaf 0 0 766 19 0 0 0 215 1000
Pine (1] 0 2 376 0 0 0 15 393
Road-A 0 0 0 0 408 60 0 33 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 0 0 917 0 0 97
Swamp-A 45 0 ] 94 460 0 4 68 671
Swamp-B 0 0 ] 3 0 0 0 9 12
Urban-D 0 0 0 0 0 217 0 0 27
Urban-F 0 0 0 0 7 8 0 0 158
Urban-I 0 0 0 0 0 14 0 0 14
Water-Al 19 0 0 0 182 0 799 0 1000
Water-A2 0 0 0 0 27 0 973 0 1000
Water-C 11 0 0 0 2 0 0 0 13
TOTAL 75 0 1050 493 1270 793 1776 1006 6463
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APPENDIX B

Contingency Table Results for Trial #3 (continued)
Table B4 - vii
BUCLIDEAN CONTINGENCY RESULTS - Test Data = Set B2
CLASS Water 1 B.Roof D. Veg C. Veg Asphalt Concrete Water 2 Grass-B | TOTAL
Construction 0 0 0 18 16 0 0 0 34
TEC Site 0 0 0 0 9 13 0 4 26
Parkiand 1 0 0 59 1 0 0 0 0 60
High School 0 0 0 0 15 13 0 0 28
Mall 0 0 0 0 42 18 0 2 62
Parkiaud 2 0 0 0 0 0 0 0 69 69
BareSoil 0 0 0 0 37 1 0 0 38
Flelds-A 0 0 260 1 502 99 0 138 1000
Fields-C 0 0 0 0 48 52 0 1 101
Fields-D 0 0 39 0 0 0 0 67 106
Grass-A 0 0 0 0 0 0 0 87 87
Grass-C 0 0 12 0 0 0 0 19 31
Leaf 0 1] 885 44 0 0 0 71 1000
Pine 0 0 0 393 0 0 0 0 393
Road-A 0 0 0 7 469 8 0 17 501
Runway-C 0 0 0 0 78 0 0 0 78
Runway-F 0 0 0 0 0 927 0 0 97
Swamp-A 67 0 0 360 12 0 232 0 671
Swamp-B 0 0 0 9 0 0 (1} k} 12
Urban-D 0 0 0 0 0 27 0 0 27
Urban-F 0 ] 0 0 7 8 0 0 15
Urban-] 0 0 0 0 0 14 0 0 14
Water-Al 113 0 0 0 0 0 887 0 1000
Water-A2 0 0 0 0 0 0 1000 0 1000
Water-C 13 0 0 0 0 0 0 0 13
TOTAL 193 0 125§ 833 1235 350 2119 478 | 6463
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Table BS Contingency Table Results for Trial #4

MODIFIED BAYES CONTINGENCY RESULTS - Test Data = B2 with xz(G) =13.28

MinVar = 16 on Water; MinVar=3 on other classes

APPENDIX B

CLASS Water 1 B.Roof D. Veg C. Veg Asphait Concrete Water 2 Grass-B NULL

Coastruction 0 0 0 0 0 0 0 0 34
ETL Site 0 0 0 0 0 0 0 0 26
Parkiand 1 0 0 33 0 0 0 0 0 27
High School 0 0 0 0 0 0 0 0 28
Mall 0 0 0 0 0 0 0 0 62
Parkland 2 0 0 0 0 0 0 0 0 69
BareSoil 0 0 0 0 0 0 0 0 38
Flelds-A 0 0 5 0 0 0 0 0 995
Flelds-C 0 0 0 0 0 0 0 0 101
Flelds-D 0 0 0 0 0 0 0 43 63
Grass-A 0 0 0 0 0 0 0 0 87
Grass-C 0 0 0 0 0 0 0 6 25
Leaf 0 0 699 0 0 0 0 80 221
Pine 0 0 0 290 0 0 0 0 103
Road-A 0 0 0 0 74 0 0 1 426
Runway-C 0 0 0 0 1 0 0 0 77
Runway-F 0 0 0 0 0 7 0 0 90
Swamp-A 0 0 0 0 0 0 s 0 666
Swamp-B 0 0 0 0 0 0 0 0 12
Urban-D 0 0 0 0 0 0 0 0 27
Urban-F 0 0 0 0 0 0 0 0 15
Urban-1 0 0 0 0 0 3 0 0 11
Water-Al 2 0 0 0 0 0 874 0 124
Water-A2 0 0 0 0 0 0 996 0 4
Water-C 0 0 0 0 0 0 0 0 13
TOTAL 2 0 737 290 75 10 18758 130 3344

98




MODIFIED BAYES CONTINGENCY RESULTS - Test Dsta = B2 with xz(G) =66.4

Contingency Table Results for Trisl #4 (continued)

MinVar = 16 on Watcr; MinVar=3 on other classes

APPENDIX B

CLASS Water 1 B.Roof D. Veg C. Veg Asphait Concrete Water 2 Grass-B NULL
Construction 0 0 0 0 17 0 0 0 17
ETL Site 0 5 0 0 0 0 0 0 21
Parkiand 1 0 0 60 0 0 0 0 0 0
High School 0 17 0 0 ] 0 0 0 11
Mall 0 39 0 0 0 3 0 0 20
Parkland 2 0 0 0 0 0 0 0 60 9
BareSoil 0 28 0 0 0 0 0 0 10
Flelds-A 0 282 258 0 0 5 0 70 385
Fields-C 0 2 0 0 0 1 0 0 98
Fields-D 0 0 2 0 0 0 0 104 0
Grass-A 0 0 0 0 0 0 0 26 61
Grass-C 0 0 2 0 0 0 0 28 1
Leaf 0 0 815§ 11 0 0 0 174 0
Pine 0 0 2 378 0 0 0 6 7
Road-A 0 160 0 0 147 0 0 8 186
Runway-C 0 7 0 0 69 0 0 0 2
Runway-F 0 36 0 0 0 50 0 0 11
Swamp-A 101 0 0 30 0 0 116 0 424
Swamp-B 9 0 0 6 0 0 0 1 5
Urbau-D 0 0 0 0 0 26 0 0 1
Urban-F 0 15 0 0 0 0 0 0 0
Urban-1 0 1 0 0 0 12 0 0 1
Water-Al 94 0 0 0 0 0 906 0 0
Water-A2 1 0 0 0 0 0 999 0 0
Water-C 13 0 0 0 0 0 0 0 0
TOTAL 209 592 1139 425 233 97 2021 477 1270
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APPENDIX C

APPENDIX C: Supporting Data for Trial §
Table C1 Auto-Classification Summary for Training Set B -Unconsolidated

_No classes are combined

Training Data MYS87_1000Samples § Training Data MYS85_1000Samples

Bayes Mashalanobis | Euclidean Bayes Mahalanobis | Euclidean
Baresoll 0.00% 0.00% 0.00% 0.00% 0.00% 2.63%
[Fields-A 36.80% 12.30% 83.00% 9.60% 3.20% 47.10%
"Fields-C 2.97% 9.90% 92.08% 1.98% 1.98% 2.97%
Flelds-D 3.7171% 5.66% 11.32% 0.00% 0.00% 4.72%
Grass-A 2.30% 5.75% 230% 1.15% 12.64% 1.15%
Gruss-B 0.00% 8.33% 16.67% 0.00% 0.00% 12.50%
Grass-C 0.00% 16.13% 16.13% 0.00% 3.23% 6.45%
Leaf 3.10% 27.30% 8.20% 1.30% 1.80% 6.50%
Pine 2.80% 8.14% 10.69% 2.80% 12.72% 17.56%
Road-A 8.38% 10.98% 30.34% 3.99% 6.99% 19.36%
Ruaway-C 513% 513% 5.13% 1.28% 1.28% 0.00%
Runway-F 0.00% 0.00% 4.12% 0.00% 0.00% 0.00%
Swamp-A 0.45% 0.30% 30.40% 1.34% 3.13% 9.84%
Swamp-B 0.00% 0.00% 16.67% 0.00% 0.00% 8.33%
Urban-D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Urban-F 0.00% 0.00% 6.67% 0.00% 0.00% 0.00%
Urban-I 0.00% 0.00% 0.00% 0.00% 0.00% 7.14%
Water-Al 32.00% 10.30% 34.60% 10.40% 15.50% 34.90%
Water-A2 16.50% 42.50% 20.70% 15.00% 10.80% 34.10%
Water-C 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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APPENDIX C

Table C1  Auto-Classification Summary for Training Set B -Unconsolidated

(continued).

No classes are combined

Tralning Data AGS85_1000Samples ] Training Data OC85_1000Samples

Bayes Mahalanobis i Mahalanobis | Euclidean
Baresolil 0.00% 0.00% 0.00% 7.89%
Fields-A 5.70% 420% 0.50% 25.80%
Fields-C 3.96% 6.93% 4.95% 17.82%
Fields-D 8.49% 7.55% 4.72% 15.09%
Grass-A 0.00% 0.00% 11.49% 34.48%
Grass-B 0.00% 0.00% 4.17% 20.83%
Grass-C 0.00% 0.00% 9.68% 19.35%
Leal 3.00% 2.60% 8.00% 24.60%
Pine 2.80% 6.62% 15.27% 3.82%
Road-A 1.80% 0.80% 1.80% 32.14%
Runway-C 0.00% 1.28% 5.13% 0.00%
Runway-F 0.00% 0.00% 0.00% 3.09%
Swamp-A 0.45% 0.75% 3.73% 59.76%
Swamp-B 0.00% 0.00% 16.67% 0.00%
Urban-D 0.00% 0.00% 0.00% 3.70%
Urban-F 0.00% 0.00% 0.00% 0.00%
Urban-1 0.00% 0.00% 0.00% 0.00%
Water-Al 32.50% 12.90% 12.90% 15.00%
Water-A2 11.00% 29.80% 7.30% 17.70%
Water-C 0.00% 0.00% 0.00% 0.00%

101




APPENDIX C

Table C1  Auto-Classification Summary for Training Set B -Unconsolidated
(continued).

No classes are combined

Training Data MR89_1000Samples

Bayes Mahalanobis | Euclidean
Baresoil 0.00% 0.00% 0.00%
Fields-A 11.00% 2.40% 95.30%
Fields-C 10.89% 20.79% 86.14%
Fields-D 4.72% 8.49% 59.43%
Grass-A 2.30% 21.84% 18.39%
Grass-B 0.00% 50.00% 20.83%
Grass-C 6.45% 32.26% 6.45%
Leat 11.20% 11.80% 63.00%
Pine 6.36% 3.56% 34.86%
Road-A 10.38% 6.39% 35.93%
Runway-C 2.56% 19.23% 1.28%
Runway-F 5.15% 6.19% 16.49%
Swamp-A 2.68% 3.87% 29.81%
Swamp-B 0.00% 8.33% 0.00%
Urban-D 0.00% 0.00% 7.41%
Urban-F 0.00% 0.00% 6.67%
Urban-l 0.00% 0.00% 7.14%
Water-Al 47.90% 14.10% 57.60%
Water-A2 10.10% 69.10% 18.10%
Water-C 0.00% 0.00% 0.00%
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APPENDIX D

APPENDIX D: Linear Model Resuits for Two Endmembers
Regression and ANOVA Tables Used in the Mixture Analysis

DEP VAR: gSwamp G174 Ns 6 MULTIPLE R: 0.990 SQUARED MULTI-LE R: 0.981
ADJUSTED SQUARED MULTIPLE R: 0.968 STANDARD ERROR OF ESTIMATE: 5.027
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
CONSTANT 5.993 4.123 0.000 . 1.454 0.242
Leaf €133 0.196 0.047 0.337 0.977 4.184 0.025
Water B190 0.710 0.065 0.881 0.977 10.934 0.002

ANALYSIS OF VARIANCE

SOURCE  SUM-OF-SQUARES DF MEAN~SQUARE F~RATIO P
REGRESSION 3907.349 2 1953.674 12,308 0.003
RESIDUAL 75.814 3 25.271

MODEL CONTAINS NO CONSTANT.

DEP VAR: fSwanp G174 N: 6 MULTIPLE R: 0.996 SQUARED MULTIPLE R: 0.992
ADJUSTED SQUARED MULTIPLE R: 0.990 STANDARD ERROR OF ESTIMATE: 5.684
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Leaf €133 0.241 0.040 0.372 0.542 6.066 0.004
Water B190 0.753 0.065 0.706 0.542 11.508 0.000

ANALYSIS OF VARIANCE

SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 15732.427 2 7866.214 243,517 0.000
RESIDUAL 129.210 4 32.302
DEP VAR: Swamp C174 N: 6 MULTIPLE R: 0.956 SQUARED MULTIPLE R: 0.915
ADJUSTED SQUARED MULTIPLE R: 0.858 STANDARD ERROR OF ESTIMATE: 10.642
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
CONSTANT -3.315 17.755 0.000 . ~0.187 0.864
Concrete B162 0.177 0.141 0.239 0.783 1.255 0.298
Water 3190 0.662 0.154 0.821 0.783 4.310 0.023

ANALYSIS OF VARIANCE

SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 3643.416 2 1821.708 16,086 0.025
RESIDUAL 339.747 3 113.249
103




Regression and ANOVA Tables Used in the Mixture Analysis (continued)
MODEL CONTAINS NO CONSTANT.
DEP VAR: Suamp C174 N: 6 MULTIPLE R: 0.989 SQUARED MULTIPLE R: 0.978
ADJUSTED SQUARED MULTIPLE R: 0.973 STANDARD ERROR OF ESTIMATE: 9.269
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Councrete B162 0.152 0.045 0.414 0.357 3.367 0.028
Water B190 0.667 0.131 0.625 0.357 5.080 0.007
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 15517.943 2 7758.971 90,301 0.000
RESIDUAL 343.694 4 85.924
MODEL CONTAINS NO CONSTANT.
DEP VAR: Swasp C174 N: 6 MULTIPLE R: 0.999 SQUARED MULTIPLE R: 0.999
ADJUSTED SQUARED MULTIPLE R: 0.999 STANDARD ERROR OF ESTIMATE: 2.066
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Grass C125 0.220 0.013 0.395 0.525 17.457 0.000
Water B190 0.731 0.024 0.685 0.525 30.274 0.000
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE P-RATIO P
REGRESSION 15844.564 2 7922.282 1856.111 0.000
RESIDUAL 17.073 4 4.268
MODEL CONTAINS NO CONSTANT.
DEP VAR: Swamp C174 N: 6 MULTIPLE R: 0.998 SQUARED MULTIPLE R: 0.997
ADJUSTED SQUARED MULTIPLE R: 0.996 STANDARD ERROR OF ESTIMATE: 3.508
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Grass C123 0.232 0.023 0.418 0.457 10.154 0.001
Water B190 0.693 0.044 0.649 0.457 15.755 0.000
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 15812.424 2 7906.212 642.604 0.000
RESIDUAL 49.214 4 12.303
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Regression and ANOVA Tables Used in the Mixture Analysis (continued)

“

APPENDIX D

MODEL CONTAINS NO CONSTANT.

DEP VAR: SBwamp Cl74

N: 6
ADJUSTED SQUARED MULTIPLE R: 0.997

MULTIPLE R: 0.999 SQUARED MULTIPLE R: 0.997
STANDARD ERROR OF ESTIMATE:

3.249

VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
Pine B140 0.402 0.037 0.492 0.332  10.993 0.000
Water B190 0.593 0.048 0.555 0.332 12.398 0.000

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F~RATIO P
REGRESSION 15819.416 2 7909.708 149,357 0.000
RESIDUAL 42.221 4 10.555
MODEL CONTAINS NO CONSTANT.
DEP VAR: Swamp C174 N: 6 MULTIPLE R: 0.996 SQUARED MULTIPLE R: 0.992
ADJUSTED SQUARED MULTIPLE R: 0.989 STANDARD ERROR OF ESTIMATE: 5.780

VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERANCE
Asphalt B160 0.572 0.084 0.740 0.176
Pine B140 0.224 0.089 0.275 0.176

ANALYSIS OF VARIANCE
SOURCE SUN-OF-SQUARES  DF MEAN-SQUARE F-RATIO
REGRESSION 15728.014 2 7864.007 235.409
RESIDUAL 133.623 4 33.406
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Regression and ANOVA Tables Used in the Mixture Analysis (continued)

MODEL CONTAINS NO COMNSTANT.

DEP VAR: swamp C174 M: 6 MULTIPLE R: 0.989 SQUARED MULTIPLE R: 0.979
ADJUSTED SQUARED MULTIPLE R: 0.974 STANDARD ERROR OF ESTIMATE: 9.150
VARIABLE  COEFFICIENT STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
Asphalt B1§0 0.697 0.203 0.901 0.076 3.426 0.027
Water B190 0.098 0.281 0.092 0.076 0.348 0.745
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES  DF MEAN-SQUARE P-RATIO P
REGRESSION 15526.728 2 7763.364 92,722 0.000
RESIDUAL 334.909 4 83.727
MODEL CONTAINS NO CONSTANT.
DEP VAR: Swamp C174 Nt 6 MULTIPLE R: 0.996 SQUARED MULTIPLE R: 0.991
ADJUSTED SQUARED MULTIPLE R: 0.989 STANDARD ERROR OF ESTIMATE: 5.875
VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
Aspbalt B160 0.652 0.059 0.843 0.379  11.122 0.000
Leag (€133 0.120 0.049 0.186 0.379 2.449 0.071
ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE FP-RATIO P
REGRESSION 15723.595 2 7861.798 227,809 0.000
RESIDUAL 138.042 4 34.510
MODEL CUNTAINS NO CONSTANT.
DEP VAR: Susmp C174 N: 6 MULTIPLE R: 0.993 SQUARED MULTIPLE R: 0.987
ADJUSTED SQUARED MULTIPLE R: 0.983 STANDARD ERROR OF ESTIMATE: 7.269
VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
Grass C12% 0.090 0.057 0.162 0.320 1.591 0.187
Asphalt B160 0.661 0.079 0.855 0.320 8.388 0.001
ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES  DF MEAN-SQUARE F-RATIO P
REGRESSION 15650.270 2 7825.135 148,086 0.000
RESIDUAL 211.367 4 $2.842
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Regression and ANOVA Tables Used in the Mixture Analysis (comtinued)

MODEL CONTAINS NO COMSTANT.

DEP VAR: Seanp C176 W: 6 MULTIPLE R: 0.999 SQUARED MULTIPLE R: 0.999
ADJUSTED SQUARED MULTIPLE R: 0.999 STANDARD ERROR OF ESTIMATE: 1.974
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Leaf €133 0.134 0.014 0.223 0.542 9.693 0.001
Water 3190 0.827 0.023 0.83% 0.542  36.357 0.000
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE P-RATIO P
REGRESSION 13622.411 2 6811.205 1247.836 0.000
RESIDUAL 15.588 4 3.897
MODEL CONTAINS NO CONSTANT.
DEP VAR: SMamp C176 N: 6 MULTIPLE R: 0.995 SQUARED MULTIPLE R: 0.990
ADJUSTED SQUARED MULTIPLE R: 0.987 STANDARD ERROR OF ESTIMATE: 5.846
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Concrete B162 0.076 0.029 0.224 0.357 2.677 0.055
Water B190 0.798 0.083 0.806 0.357 9.629 0.001
ANALYSIS OF VARIANCE
SOURCE  SUM-OP~SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 13591.276 2 6750.638 197,498 0.000
RESIDUAL 136.723 4 34.181
MODEL CONTAINS NO CONSTANT.
DEP VAR: Swamp C176 N: 6 MULTIPLE R: 1.000 SQUARED MULTIPLE R: 1.000
ADJUSTED SQUARED MULTIPLE R: 1.000 STANDARD ERROR OF ESTIMATE: 0.959
VARIABLE COEFFICIENT STD ERROR {7 COEF TOLERANCE T P(2 TAIL)
Grass C12% 0.119 0.006 0.230 0.525 20.282 0.000
Water B190 0.819 0.011 0.828 0.525 73.060 0.000
ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE P-RATIO P
REGRESSION 13634.322 2 601" .161 212,713 0.000
RESIDUAL 3.676 4 0.9:¢
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APPENDIX D
Regression and ANOVA Tables Used in the Mixture Analysis (continued)
MODEL COWTAINS WO COMSTANT.
DEP VAR: Sanp Cl16 Wi 6 MULTIPLE R: 0.985 SQUARED MULTIPLE R: 0.970
ADJUSTED SQUARED MULTIPLE R: 0,962 STANDARD ERROR OF ESTIMATE: 10.143
VARIABLE  COEFFPICIENT  STD ERROR STD COEP TOLERANCE T  P(2 TAIL)
Asphalt B160 0.727 0.110 1.01% 0.320 6.612 0.003
Grass C123 ~0.019 0.079 -0.036 0.320 -0.238 0.824
ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES  DF MEAN-SQUARE P-RATIO P
REGRESSION 13226.475 2 6613.237 64.28) 0.001
RESIDUAL 411.524 4 102.881
MODEL CONTAINS NO CONSTANT.
DEP VAR: Swamp C176 M: 6 MULTIPLE R: 1,000 SQUARED MULTIPLE R: 1.000
ADJUSTED SQUARED MULTIPLE R: 1.000 STANDARD ERROR OF ESTIMATE: 0.978
VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERAMCE T  P(2 TAIL)
Pine B140 0.219 0.011 0.289 0.332 19,871 0.000
Water 3190 0.742 0.014 0.750 0.332 51.555 0.000
ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES  DF MEAN-SQUARE P-RATIO P
REGRESSION 13634.170 2 6817.085 123,011 0.000
RESIDUAL 3.828 4 0.957
DEP VAR: anp G176 M: 6 MULTIPLE Rt 0.979 SQUARED MULTIPLE Rt 0.958
ADJUSTED SQUARED MULTIPLE R: 0.931 STANDARD ERROR OF ESTIMATE: 7.867
VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
CONSTANT -14.536 7.601 0.000 . -1.912 0.152
Pine B160 0.145 0.134 0.155 0.672 1.082 0.358
Asphalt 3160 0.774 0.126 0.882 0.672 6.142 0.009

ANALYSIS OF VARIANCE

SOURCE  SUM-OPF-SQUARES DF MEAN-SQUARE P-RATIO P
REGRESSION 4285.012 2 2142.506 A4.616 0.008
RESIDUAL 185.678 3 61.893
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APPENDIX D
Regression and ANOVA Tables Used in the Mixture Analysis (coutinued)
DEP VAR: hang_C116 M1 6 MULTIPLE R: 0.971 SQUARED MULTIPLE R: 0,942
ADJUSTED SQUARED MULTIPLE R: 0.928 STANDARD ERROR OF ESTIMATE: 8.034
VARIABLE  COEFFICIENT  STD ERROR STD CORF TOLERAMCE T  P(2 TAIL)
CONSTANT -11.018 7.016 0.000 . -1.570 0.191
Asphalt B160 0.8%2 0.106 0.971 1.000 8.079 0.001
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES  DF MEAN-SQUARE P-RATIO P
REGRESSION 4212.539 1 4212.539 $5.272 0.001
RESIDUAL 258.151 4 64.538
NODEL CONTAINS NO COMSTANT.
DEP VAR: Sanp G176 M: 6 MULTIPLE R: 0.985 SQUARED MULTIPLE R: 0.970
ADJUSTED SQUARED MULTIPLE R: 0.962 STANDARD ERROR OF ESTIMATE: 10.149
VARIABLE  COEFFICIENT  STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
Pine 3140 0.035 0.157 0.047 0.176 0.226 0.832
Asphalt B160 0.675 0.148 0.942 0.176 4.553 0.010

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES  DF MEAN-SQUARE F-RATIO P
REGRESSION 13225.952 2 6612.976 64,196 0.001
RESIDUAL 412.047 4 103.012
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APPENDIX D
Regression and ANOVA Tables Used in the Mixture Analysis (continued)
MODEL CONTAINS NO COMSTAMT.
DEP VAR: theanp C17% N: 6 MULTIPLE R: 0.990 SQUARED MULTIPLE R: 0.980
ADJUSTED SQUARED MULTIPLE R: 0.975 STANDARD ERROR OF ESTINATE: 9.050
VARIABLE COEPPICIENT STD ERROR STD COEP TOLERANCE T P(2 TAIL)
Leat C133 0.280 0.063 0.423 0.542 4.428 0.011
Water 83190 0.713 0.104 0.65¢ 0.542 6.844 0.002
ANALYSIS OF VARTANCE
SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 16256.170 2 8128.085 29,243 0.000
RESIDUAL 327.604 4 81.901
MODEL CONTAINS NO COMSTANT.
DEP VAR: fuaan C17% Nt 6 MULTIPLE R: 0.997 SQUARED MULTIPLE R: 0.995
ADJUSTED SQUARED MULTIPLE R: 0.994 STANDARD ERROR OF ESTIMATE: 4.625
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T  P(2 TAIL)
Grass C12% 0.263 0.028 0.461 0.525 9.295 0.001
Water B190 0.679 0.054 0.622 0.525 12.561 0.000
ANALYSIS OF VARIANCE
SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 16498.212 2 8249.106 ans.641 0.000
RESIDUAL 85.561 4 21.390
DEP VAR: Svamp_C175 N: 6 MULTIPLE R: 0.999 SQUARED MULTIPLE R: 0.998
ADJUSTED SQUARED MULTIPLE R: 0.996 STANDARD ERROR OF ESTIMATE: 1.642
VARIABLE  COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
COMSTANT -5.700 1.616 0.000 . -3,527 0.039
Leaf C133 0.175 0.015 0.319 0.956 11.354 0.001
Asphalt B160 0.693 0.022 0.882 0.956  31.400 0.000

ANALYSIS OF VARIANCE

SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 3566.358 2 1783.179 §6).567 0.000
RESIDUAL 8.086 3 2.695

110




Regression and ANOVA Tables Used in the Mixture Anslysis (comtinued)

MODEL COMTAINS NO COMSTANT.

APPENDIX D

DEP VAR: Svamp G175 M: 6 MULTIPLE R: 0.999 SQUARED NULTIPLE R: 0.997
ADJUSTED SQUARED MULTIPLE R: 0.997 STANDARD ERROR OF ESTIMATE: 3.226
VARIABLE  COEFFICIENT  STD ERROR STD CORF TOLERAMCE T  P(2 TAIL)
Leaf €133 0.150 0.027 0.227 0.379 5.580 0.008
Asphalt B160 0.640 0.032 0.810 0.379 19.903 0.000
AMALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES  DF MEAN-SQUARE P-RATIO )
REGRESSION 16542.149 2 8271.074 194.82¢ 0.000
RESIDUAL 41.625 ‘4 10.406
MODEL CONTAINS NO CONSTANT.
DEP VAR: Mamp _C17% M1 6 MULTIPLE R: 0.998 SQUARED MULTIPLE R: 0.995

ADJUSTED SQUARED MULTIPLE R: 0.994 STANDARD ERROR OF ESTIMATE: 4.467
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Grass C12%5 0.132 0.035 0.232 0.320 3.785 0.019
Asphalt B160 0.631 0.048 0.798 0.320 13.017 0.000
ANALYSIS OF VARIANCE

SOURCE  SUM-OF-SQUARES DF MEAN-SQUARE F~-RATIO P
REGRESSION 16503.964 2 8251.982 413,586 0.000
RESIDUAL 79.809 L 19.952
MODEL CONTAINS NO CONSTANT.
DEP VAR: Svamp G175 N: 6 MULTIPLE R: 0.990 SQUARED MULTIPLE R: 0.979
ADJUSTED SQUARED MULTIPLE R: 0.974 STANDARD ERROR OF ESTIMATE: 9.239
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)
Water 3190 -0.151 0.283 -0.138 0.076 -0.531 0.623
Asphalt B160 0.887 0.205 1.122 0.076 4.318 0.012
ANALYSIS OF VARIANCE
SOURCE  SUM-OPF-SQUARES DF MEAN~SQUARE P-RATIO P
REGRESSION 16242.305 2 8121.153 25,132 0.000
RESIDUAL 341.468 4 85.367
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APPENDIX E

APPENDIX E: Linear Model Results for Three Endmembers

Regression Results for Three-Endmember Mixture Analysis

DEP VAR: Maamn G174 W3 6 MULTIPLE R: 0.999 SQUARED MULTIPLE R: 0.999
ADJUSTED SQUARED MULTIPLE R: 0.998 STANDARD ERROR OF BSTIMATE: 2.459
VARIABLE CORFPICIRNT STD ERROR S8TD CORP TOLERANCE T P(2 TAIL)
Leaf €133 0.172 0.023 0.266 0.290 7.338 0.005
Coacrete B162 0.070 0.016 0.191 0.191 4.286 0.023
Water 3190 0.666 0.03% 0.624 0.357 19.113 0.000
AMALYSIS OF VARIAMCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE P-RATIO P
REGRESSION 15843.500 3 5281.167 813.522 0.000
RESIDUAL 18.137 3 6.046
RESIDUALS
s1 B2 33 B4 BS 87
Leaf, Water -1.05 -1.28 2.68 -4.77 8.64 4.68
Concrete,Water 2.01 -4.28 ~8.29 1.4.71 0.63 -5.97
Concrete,Water, Leaf 1.45 <=2.30 <1.93 -1.11 2.30 -0.71
DURBIN-WATSON D STATISTIC 1.961
FIRST ORDER AUTOCORRELATION -0.052
EIGENVALUES OF UNIT SCALED X'X
1 2 3
2.550 0.325 0.125
CONDITION INDICES
1 2 3
1.000 2.799 4.518
VARIANCE PROPORTIONS
1 2 3
€133 0.037 0.375 0.588
B162 0.027 0.00S 0.968
B190 0.044 0.628 0.328
CORRELATION MATRIX OF REGRESSION COEFFICIENTS
€133 B162 B190
€133 1.000
Bl162 -0.682 1.000
B190 -0.00S -0.583 1.000
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APPENDIX E

Regression Results for Three-Endmember Mixture Analysis (continued)

DEP VAR: guamp Cl74 Wi 6 MULTIPLE R: 1.000 SQUARED MULTIPLE R: 1.000

ADJUSTED SQUARED MULTIPLE R: 0.999 STAMDARD BRROR OF ESTIMATE: 1.361
VARIABLE COEFFICIENT 8TD ERROR STD COEF TOLERANCE T P(2 TAIL)
Grass C125 0.192 0.014 0.344 0.730 13.512 0.001
Coacrete B162 0.028 0.011 0.077 0.123 2.49%4 0.088
Water B190 0.703 0.019 0.659 0.351 36.125 0.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE P-RATIO 4
REGRESSION 15856.081 3 5285.360 28331.97% 0.000
RESIDUAL 5.556 3 1.852
RESIDUALS

Bl B2 33 B BS B7
Concrete,Water, Grass 0.77 -2.00 -0.08 «0.4% 0.80 -0.25

DURBIR-WATS8ON D STATISTIC 2.575
FIRST ORDER AUTOCORRELATION -0.346

EIGENVALUES OF UMIT SCALED X'X

1 2 3
2.599 0.324 0.077
CONDITION INDICES
1 2 3
1.000 2.831 5.828
VARIANCE PROPORTIONS
1 2 3
c12s 0.023 0.184 0.793
Bl62 0.017 0.012 0.971
B1%0 0.041 0.690 0.269

CORRELATION MATRIX OF REGRESSION COEFFICIENTS

ci2s B162 B190
c125 1.000
B162 -0.810 1.000
B190 0.137 -0.576 1.000
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AFB
AVIRIS
DMA
DOC

GSD

GT

IFOV
ISODATA
JPL

LAS
MVN
NHAP
RGB

RW

SPL
SRTF/MBIPS
TEC

™
TTADB

LIST OF ACRONYMS

Air Force Base

Airborne Visible/ Infrared Imaging Spectrometer
Defense Mapping Agency

Degree of Compliance

Ground Sampling Distance

Ground Truth

Instantaneous Field of View

Iterative Self-Organizing Data Analysis Techniques A
Jet Propulsion Laboratory

Land Analysis System

Multivariate Normal

National High Altitude Photography

Red, Green, Blue

Runway

TEC's Space Programs Laboratory

Space Research Test Facility, Multiband Image Processing System
U.S. Army Topographic Engineer Center

Landsat Thematic Mapper

DMA's Tactical Terrain Analysis Data Base
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